| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1eq2 | Unicode version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 5409 |
. . 3
| |
| 2 | 1 | anbi1d 465 |
. 2
|
| 3 | df-f1 5276 |
. 2
| |
| 4 | df-f1 5276 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5274 df-f 5275 df-f1 5276 |
| This theorem is referenced by: f1oeq2 5511 f1eq123d 5514 brdom2g 6836 brdomg 6837 ennnfonelemen 12792 |
| Copyright terms: Public domain | W3C validator |