Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1eq2 | Unicode version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5321 | . . 3 | |
2 | 1 | anbi1d 461 | . 2 |
3 | df-f1 5193 | . 2 | |
4 | df-f1 5193 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 ccnv 4603 wfun 5182 wf 5184 wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 df-f 5192 df-f1 5193 |
This theorem is referenced by: f1oeq2 5422 f1eq123d 5425 brdomg 6714 ennnfonelemen 12354 |
Copyright terms: Public domain | W3C validator |