ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq2 Unicode version

Theorem f1eq2 5389
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq2  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )

Proof of Theorem f1eq2
StepHypRef Expression
1 feq2 5321 . . 3  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
21anbi1d 461 . 2  |-  ( A  =  B  ->  (
( F : A --> C  /\  Fun  `' F
)  <->  ( F : B
--> C  /\  Fun  `' F ) ) )
3 df-f1 5193 . 2  |-  ( F : A -1-1-> C  <->  ( F : A --> C  /\  Fun  `' F ) )
4 df-f1 5193 . 2  |-  ( F : B -1-1-> C  <->  ( F : B --> C  /\  Fun  `' F ) )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   `'ccnv 4603   Fun wfun 5182   -->wf 5184   -1-1->wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5191  df-f 5192  df-f1 5193
This theorem is referenced by:  f1oeq2  5422  f1eq123d  5425  brdomg  6714  ennnfonelemen  12354
  Copyright terms: Public domain W3C validator