| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 5348 |
. . 3
| |
| 2 | 1 | anbi1d 465 |
. 2
|
| 3 | df-f 5263 |
. 2
| |
| 4 | df-f 5263 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 df-f 5263 |
| This theorem is referenced by: feq23 5394 feq2d 5396 feq2i 5402 f00 5450 f0dom0 5452 f1eq2 5460 fressnfv 5750 tfrcllemsucfn 6413 tfrcllemsucaccv 6414 tfrcllembxssdm 6416 tfrcllembfn 6417 tfrcllemaccex 6421 tfrcllemres 6422 tfrcldm 6423 tfrcl 6424 mapvalg 6719 map0g 6749 ac6sfi 6961 isomni 7204 ismkv 7221 iswomni 7233 isghm 13399 |
| Copyright terms: Public domain | W3C validator |