ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2 Unicode version

Theorem feq2 5387
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 5343 . . 3  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
21anbi1d 465 . 2  |-  ( A  =  B  ->  (
( F  Fn  A  /\  ran  F  C_  C
)  <->  ( F  Fn  B  /\  ran  F  C_  C ) ) )
3 df-f 5258 . 2  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
4 df-f 5258 . 2  |-  ( F : B --> C  <->  ( F  Fn  B  /\  ran  F  C_  C ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    C_ wss 3153   ran crn 4660    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5257  df-f 5258
This theorem is referenced by:  feq23  5389  feq2d  5391  feq2i  5397  f00  5445  f0dom0  5447  f1eq2  5455  fressnfv  5745  tfrcllemsucfn  6406  tfrcllemsucaccv  6407  tfrcllembxssdm  6409  tfrcllembfn  6410  tfrcllemaccex  6414  tfrcllemres  6415  tfrcldm  6416  tfrcl  6417  mapvalg  6712  map0g  6742  ac6sfi  6954  isomni  7195  ismkv  7212  iswomni  7224  isghm  13313
  Copyright terms: Public domain W3C validator