| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 5363 |
. . 3
| |
| 2 | 1 | anbi1d 465 |
. 2
|
| 3 | df-f 5275 |
. 2
| |
| 4 | df-f 5275 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5274 df-f 5275 |
| This theorem is referenced by: feq23 5411 feq2d 5413 feq2i 5419 f00 5467 f0dom0 5469 f1eq2 5477 fressnfv 5771 tfrcllemsucfn 6439 tfrcllemsucaccv 6440 tfrcllembxssdm 6442 tfrcllembfn 6443 tfrcllemaccex 6447 tfrcllemres 6448 tfrcldm 6449 tfrcl 6450 mapvalg 6745 map0g 6775 ac6sfi 6995 isomni 7238 ismkv 7255 iswomni 7267 isghm 13579 |
| Copyright terms: Public domain | W3C validator |