| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq2 | Unicode version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 5364 |
. . 3
| |
| 2 | 1 | anbi1d 465 |
. 2
|
| 3 | df-f 5276 |
. 2
| |
| 4 | df-f 5276 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5275 df-f 5276 |
| This theorem is referenced by: feq23 5413 feq2d 5415 feq2i 5421 f00 5469 f0dom0 5471 f1eq2 5479 fressnfv 5773 tfrcllemsucfn 6441 tfrcllemsucaccv 6442 tfrcllembxssdm 6444 tfrcllembfn 6445 tfrcllemaccex 6449 tfrcllemres 6450 tfrcldm 6451 tfrcl 6452 mapvalg 6747 map0g 6777 ac6sfi 6997 isomni 7240 ismkv 7257 iswomni 7269 isghm 13612 |
| Copyright terms: Public domain | W3C validator |