![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feq2 | Unicode version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 5344 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1d 465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-f 5259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-f 5259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3bitr4g 223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-fn 5258 df-f 5259 |
This theorem is referenced by: feq23 5390 feq2d 5392 feq2i 5398 f00 5446 f0dom0 5448 f1eq2 5456 fressnfv 5746 tfrcllemsucfn 6408 tfrcllemsucaccv 6409 tfrcllembxssdm 6411 tfrcllembfn 6412 tfrcllemaccex 6416 tfrcllemres 6417 tfrcldm 6418 tfrcl 6419 mapvalg 6714 map0g 6744 ac6sfi 6956 isomni 7197 ismkv 7214 iswomni 7226 isghm 13316 |
Copyright terms: Public domain | W3C validator |