ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2 Unicode version

Theorem feq2 5321
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 5277 . . 3  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
21anbi1d 461 . 2  |-  ( A  =  B  ->  (
( F  Fn  A  /\  ran  F  C_  C
)  <->  ( F  Fn  B  /\  ran  F  C_  C ) ) )
3 df-f 5192 . 2  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
4 df-f 5192 . 2  |-  ( F : B --> C  <->  ( F  Fn  B  /\  ran  F  C_  C ) )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    C_ wss 3116   ran crn 4605    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5191  df-f 5192
This theorem is referenced by:  feq23  5323  feq2d  5325  feq2i  5331  f00  5379  f0dom0  5381  f1eq2  5389  fressnfv  5672  tfrcllemsucfn  6321  tfrcllemsucaccv  6322  tfrcllembxssdm  6324  tfrcllembfn  6325  tfrcllemaccex  6329  tfrcllemres  6330  tfrcldm  6331  tfrcl  6332  mapvalg  6624  map0g  6654  ac6sfi  6864  isomni  7100  ismkv  7117  iswomni  7129
  Copyright terms: Public domain W3C validator