ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq123d Unicode version

Theorem f1eq123d 5455
Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1  |-  ( ph  ->  F  =  G )
f1eq123d.2  |-  ( ph  ->  A  =  B )
f1eq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
f1eq123d  |-  ( ph  ->  ( F : A -1-1-> C  <-> 
G : B -1-1-> D
) )

Proof of Theorem f1eq123d
StepHypRef Expression
1 f1eq123d.1 . . 3  |-  ( ph  ->  F  =  G )
2 f1eq1 5418 . . 3  |-  ( F  =  G  ->  ( F : A -1-1-> C  <->  G : A -1-1-> C ) )
31, 2syl 14 . 2  |-  ( ph  ->  ( F : A -1-1-> C  <-> 
G : A -1-1-> C
) )
4 f1eq123d.2 . . 3  |-  ( ph  ->  A  =  B )
5 f1eq2 5419 . . 3  |-  ( A  =  B  ->  ( G : A -1-1-> C  <->  G : B -1-1-> C ) )
64, 5syl 14 . 2  |-  ( ph  ->  ( G : A -1-1-> C  <-> 
G : B -1-1-> C
) )
7 f1eq123d.3 . . 3  |-  ( ph  ->  C  =  D )
8 f1eq3 5420 . . 3  |-  ( C  =  D  ->  ( G : B -1-1-> C  <->  G : B -1-1-> D ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( G : B -1-1-> C  <-> 
G : B -1-1-> D
) )
103, 6, 93bitrd 214 1  |-  ( ph  ->  ( F : A -1-1-> C  <-> 
G : B -1-1-> D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   -1-1->wf1 5215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator