ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq3 Unicode version

Theorem f1eq3 5478
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 5410 . . 3  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )
21anbi1d 465 . 2  |-  ( A  =  B  ->  (
( F : C --> A  /\  Fun  `' F
)  <->  ( F : C
--> B  /\  Fun  `' F ) ) )
3 df-f1 5276 . 2  |-  ( F : C -1-1-> A  <->  ( F : C --> A  /\  Fun  `' F ) )
4 df-f1 5276 . 2  |-  ( F : C -1-1-> B  <->  ( F : C --> B  /\  Fun  `' F ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   `'ccnv 4674   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-f 5275  df-f1 5276
This theorem is referenced by:  f1oeq3  5512  f1eq123d  5514  tposf12  6355  brdom2g  6836  brdomg  6837
  Copyright terms: Public domain W3C validator