ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq3 Unicode version

Theorem f1eq3 5500
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 5430 . . 3  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )
21anbi1d 465 . 2  |-  ( A  =  B  ->  (
( F : C --> A  /\  Fun  `' F
)  <->  ( F : C
--> B  /\  Fun  `' F ) ) )
3 df-f1 5295 . 2  |-  ( F : C -1-1-> A  <->  ( F : C --> A  /\  Fun  `' F ) )
4 df-f1 5295 . 2  |-  ( F : C -1-1-> B  <->  ( F : C --> B  /\  Fun  `' F ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   `'ccnv 4692   Fun wfun 5284   -->wf 5286   -1-1->wf1 5287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-f 5294  df-f1 5295
This theorem is referenced by:  f1oeq3  5534  f1eq123d  5536  tposf12  6378  brdom2g  6859  brdomg  6860
  Copyright terms: Public domain W3C validator