ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq3 Unicode version

Theorem f1eq3 5419
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 5351 . . 3  |-  ( A  =  B  ->  ( F : C --> A  <->  F : C
--> B ) )
21anbi1d 465 . 2  |-  ( A  =  B  ->  (
( F : C --> A  /\  Fun  `' F
)  <->  ( F : C
--> B  /\  Fun  `' F ) ) )
3 df-f1 5222 . 2  |-  ( F : C -1-1-> A  <->  ( F : C --> A  /\  Fun  `' F ) )
4 df-f1 5222 . 2  |-  ( F : C -1-1-> B  <->  ( F : C --> B  /\  Fun  `' F ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   `'ccnv 4626   Fun wfun 5211   -->wf 5213   -1-1->wf1 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143  df-f 5221  df-f1 5222
This theorem is referenced by:  f1oeq3  5452  f1eq123d  5454  tposf12  6270  brdomg  6748
  Copyright terms: Public domain W3C validator