ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 Unicode version

Theorem f1eq1 5476
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5408 . . 3  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
2 cnveq 4852 . . . 4  |-  ( F  =  G  ->  `' F  =  `' G
)
32funeqd 5293 . . 3  |-  ( F  =  G  ->  ( Fun  `' F  <->  Fun  `' G ) )
41, 3anbi12d 473 . 2  |-  ( F  =  G  ->  (
( F : A --> B  /\  Fun  `' F
)  <->  ( G : A
--> B  /\  Fun  `' G ) ) )
5 df-f1 5276 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
6 df-f1 5276 . 2  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
74, 5, 63bitr4g 223 1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   `'ccnv 4674   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276
This theorem is referenced by:  f1oeq1  5510  f1eq123d  5514  fun11iun  5543  fo00  5558  tposf12  6355  f1dom4g  6844  f1dom2g  6847  f1domg  6849  dom3d  6865  domtr  6877  djudom  7195  difinfsn  7202  djudoml  7331  djudomr  7332  4sqlem11  12724  nninfdc  12824  conjsubgen  13614
  Copyright terms: Public domain W3C validator