Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1eq1 | Unicode version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 5319 | . . 3 | |
2 | cnveq 4777 | . . . 4 | |
3 | 2 | funeqd 5209 | . . 3 |
4 | 1, 3 | anbi12d 465 | . 2 |
5 | df-f1 5192 | . 2 | |
6 | df-f1 5192 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 ccnv 4602 wfun 5181 wf 5183 wf1 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 |
This theorem is referenced by: f1oeq1 5420 f1eq123d 5424 fun11iun 5452 fo00 5467 tposf12 6233 f1dom2g 6718 f1domg 6720 dom3d 6736 domtr 6747 djudom 7054 difinfsn 7061 djudoml 7171 djudomr 7172 nninfdc 12382 |
Copyright terms: Public domain | W3C validator |