| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1eq1 | Unicode version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 5456 |
. . 3
| |
| 2 | cnveq 4896 |
. . . 4
| |
| 3 | 2 | funeqd 5340 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f1 5323 |
. 2
| |
| 6 | df-f1 5323 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 |
| This theorem is referenced by: f1oeq1 5560 f1eq123d 5564 fun11iun 5593 fo00 5609 tposf12 6415 f1dom4g 6904 f1dom2g 6907 f1domg 6909 dom3d 6925 domtr 6937 dom1o 6977 djudom 7260 difinfsn 7267 djudoml 7401 djudomr 7402 4sqlem11 12924 nninfdc 13024 conjsubgen 13815 |
| Copyright terms: Public domain | W3C validator |