| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1eq1 | Unicode version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 5408 |
. . 3
| |
| 2 | cnveq 4852 |
. . . 4
| |
| 3 | 2 | funeqd 5293 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f1 5276 |
. 2
| |
| 6 | df-f1 5276 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 |
| This theorem is referenced by: f1oeq1 5510 f1eq123d 5514 fun11iun 5543 fo00 5558 tposf12 6355 f1dom4g 6844 f1dom2g 6847 f1domg 6849 dom3d 6865 domtr 6877 djudom 7195 difinfsn 7202 djudoml 7331 djudomr 7332 4sqlem11 12724 nninfdc 12824 conjsubgen 13614 |
| Copyright terms: Public domain | W3C validator |