ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 Unicode version

Theorem f1eq1 5455
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5387 . . 3  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
2 cnveq 4837 . . . 4  |-  ( F  =  G  ->  `' F  =  `' G
)
32funeqd 5277 . . 3  |-  ( F  =  G  ->  ( Fun  `' F  <->  Fun  `' G ) )
41, 3anbi12d 473 . 2  |-  ( F  =  G  ->  (
( F : A --> B  /\  Fun  `' F
)  <->  ( G : A
--> B  /\  Fun  `' G ) ) )
5 df-f1 5260 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
6 df-f1 5260 . 2  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
74, 5, 63bitr4g 223 1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   `'ccnv 4659   Fun wfun 5249   -->wf 5251   -1-1->wf1 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260
This theorem is referenced by:  f1oeq1  5489  f1eq123d  5493  fun11iun  5522  fo00  5537  tposf12  6324  f1dom2g  6812  f1domg  6814  dom3d  6830  domtr  6841  djudom  7154  difinfsn  7161  djudoml  7281  djudomr  7282  4sqlem11  12542  nninfdc  12613  conjsubgen  13351
  Copyright terms: Public domain W3C validator