ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 Unicode version

Theorem f1eq1 5478
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5410 . . 3  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
2 cnveq 4853 . . . 4  |-  ( F  =  G  ->  `' F  =  `' G
)
32funeqd 5294 . . 3  |-  ( F  =  G  ->  ( Fun  `' F  <->  Fun  `' G ) )
41, 3anbi12d 473 . 2  |-  ( F  =  G  ->  (
( F : A --> B  /\  Fun  `' F
)  <->  ( G : A
--> B  /\  Fun  `' G ) ) )
5 df-f1 5277 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
6 df-f1 5277 . 2  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
74, 5, 63bitr4g 223 1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   `'ccnv 4675   Fun wfun 5266   -->wf 5268   -1-1->wf1 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277
This theorem is referenced by:  f1oeq1  5512  f1eq123d  5516  fun11iun  5545  fo00  5560  tposf12  6357  f1dom4g  6846  f1dom2g  6849  f1domg  6851  dom3d  6867  domtr  6879  djudom  7197  difinfsn  7204  djudoml  7333  djudomr  7334  4sqlem11  12757  nninfdc  12857  conjsubgen  13647
  Copyright terms: Public domain W3C validator