| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1eq1 | Unicode version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 5428 |
. . 3
| |
| 2 | cnveq 4870 |
. . . 4
| |
| 3 | 2 | funeqd 5312 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-f1 5295 |
. 2
| |
| 6 | df-f1 5295 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 |
| This theorem is referenced by: f1oeq1 5532 f1eq123d 5536 fun11iun 5565 fo00 5581 tposf12 6378 f1dom4g 6867 f1dom2g 6870 f1domg 6872 dom3d 6888 domtr 6900 djudom 7221 difinfsn 7228 djudoml 7362 djudomr 7363 4sqlem11 12839 nninfdc 12939 conjsubgen 13729 dom1o 16128 |
| Copyright terms: Public domain | W3C validator |