ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomg Unicode version

Theorem brdomg 6802
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
brdomg  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
Distinct variable groups:    A, f    B, f
Allowed substitution hint:    C( f)

Proof of Theorem brdomg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6799 . . . 4  |-  Rel  ~<_
21brrelex1i 4702 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
32a1i 9 . 2  |-  ( B  e.  C  ->  ( A  ~<_  B  ->  A  e.  _V ) )
4 f1f 5459 . . . . 5  |-  ( f : A -1-1-> B  -> 
f : A --> B )
5 fdm 5409 . . . . . 6  |-  ( f : A --> B  ->  dom  f  =  A
)
6 vex 2763 . . . . . . 7  |-  f  e. 
_V
76dmex 4928 . . . . . 6  |-  dom  f  e.  _V
85, 7eqeltrrdi 2285 . . . . 5  |-  ( f : A --> B  ->  A  e.  _V )
94, 8syl 14 . . . 4  |-  ( f : A -1-1-> B  ->  A  e.  _V )
109exlimiv 1609 . . 3  |-  ( E. f  f : A -1-1-> B  ->  A  e.  _V )
1110a1i 9 . 2  |-  ( B  e.  C  ->  ( E. f  f : A -1-1-> B  ->  A  e. 
_V ) )
12 f1eq2 5455 . . . . 5  |-  ( x  =  A  ->  (
f : x -1-1-> y  <-> 
f : A -1-1-> y ) )
1312exbidv 1836 . . . 4  |-  ( x  =  A  ->  ( E. f  f :
x -1-1-> y  <->  E. f 
f : A -1-1-> y ) )
14 f1eq3 5456 . . . . 5  |-  ( y  =  B  ->  (
f : A -1-1-> y  <-> 
f : A -1-1-> B
) )
1514exbidv 1836 . . . 4  |-  ( y  =  B  ->  ( E. f  f : A -1-1-> y  <->  E. f 
f : A -1-1-> B
) )
16 df-dom 6796 . . . 4  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
1713, 15, 16brabg 4299 . . 3  |-  ( ( A  e.  _V  /\  B  e.  C )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
1817expcom 116 . 2  |-  ( B  e.  C  ->  ( A  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) ) )
193, 11, 18pm5.21ndd 706 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   dom cdm 4659   -->wf 5250   -1-1->wf1 5251    ~<_ cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-fn 5257  df-f 5258  df-f1 5259  df-dom 6796
This theorem is referenced by:  brdomi  6803  brdom  6804  f1dom2g  6810  f1domg  6812  dom3d  6828  phplem4dom  6918  djudom  7152  difinfsn  7159  djudoml  7279  djudomr  7280  nninfdc  12610
  Copyright terms: Public domain W3C validator