ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomg Unicode version

Theorem brdomg 6747
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
brdomg  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
Distinct variable groups:    A, f    B, f
Allowed substitution hint:    C( f)

Proof of Theorem brdomg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6744 . . . 4  |-  Rel  ~<_
21brrelex1i 4669 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
32a1i 9 . 2  |-  ( B  e.  C  ->  ( A  ~<_  B  ->  A  e.  _V ) )
4 f1f 5421 . . . . 5  |-  ( f : A -1-1-> B  -> 
f : A --> B )
5 fdm 5371 . . . . . 6  |-  ( f : A --> B  ->  dom  f  =  A
)
6 vex 2740 . . . . . . 7  |-  f  e. 
_V
76dmex 4893 . . . . . 6  |-  dom  f  e.  _V
85, 7eqeltrrdi 2269 . . . . 5  |-  ( f : A --> B  ->  A  e.  _V )
94, 8syl 14 . . . 4  |-  ( f : A -1-1-> B  ->  A  e.  _V )
109exlimiv 1598 . . 3  |-  ( E. f  f : A -1-1-> B  ->  A  e.  _V )
1110a1i 9 . 2  |-  ( B  e.  C  ->  ( E. f  f : A -1-1-> B  ->  A  e. 
_V ) )
12 f1eq2 5417 . . . . 5  |-  ( x  =  A  ->  (
f : x -1-1-> y  <-> 
f : A -1-1-> y ) )
1312exbidv 1825 . . . 4  |-  ( x  =  A  ->  ( E. f  f :
x -1-1-> y  <->  E. f 
f : A -1-1-> y ) )
14 f1eq3 5418 . . . . 5  |-  ( y  =  B  ->  (
f : A -1-1-> y  <-> 
f : A -1-1-> B
) )
1514exbidv 1825 . . . 4  |-  ( y  =  B  ->  ( E. f  f : A -1-1-> y  <->  E. f 
f : A -1-1-> B
) )
16 df-dom 6741 . . . 4  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
1713, 15, 16brabg 4269 . . 3  |-  ( ( A  e.  _V  /\  B  e.  C )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
1817expcom 116 . 2  |-  ( B  e.  C  ->  ( A  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) ) )
193, 11, 18pm5.21ndd 705 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737   class class class wbr 4003   dom cdm 4626   -->wf 5212   -1-1->wf1 5213    ~<_ cdom 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-rel 4633  df-cnv 4634  df-dm 4636  df-rn 4637  df-fn 5219  df-f 5220  df-f1 5221  df-dom 6741
This theorem is referenced by:  brdomi  6748  brdom  6749  f1dom2g  6755  f1domg  6757  dom3d  6773  phplem4dom  6861  djudom  7091  difinfsn  7098  djudoml  7217  djudomr  7218  nninfdc  12448
  Copyright terms: Public domain W3C validator