| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brdomg | Unicode version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| brdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6804 |
. . . 4
| |
| 2 | 1 | brrelex1i 4706 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | f1f 5463 |
. . . . 5
| |
| 5 | fdm 5413 |
. . . . . 6
| |
| 6 | vex 2766 |
. . . . . . 7
| |
| 7 | 6 | dmex 4932 |
. . . . . 6
|
| 8 | 5, 7 | eqeltrrdi 2288 |
. . . . 5
|
| 9 | 4, 8 | syl 14 |
. . . 4
|
| 10 | 9 | exlimiv 1612 |
. . 3
|
| 11 | 10 | a1i 9 |
. 2
|
| 12 | f1eq2 5459 |
. . . . 5
| |
| 13 | 12 | exbidv 1839 |
. . . 4
|
| 14 | f1eq3 5460 |
. . . . 5
| |
| 15 | 14 | exbidv 1839 |
. . . 4
|
| 16 | df-dom 6801 |
. . . 4
| |
| 17 | 13, 15, 16 | brabg 4303 |
. . 3
|
| 18 | 17 | expcom 116 |
. 2
|
| 19 | 3, 11, 18 | pm5.21ndd 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-fn 5261 df-f 5262 df-f1 5263 df-dom 6801 |
| This theorem is referenced by: brdomi 6808 brdom 6809 f1dom2g 6815 f1domg 6817 dom3d 6833 phplem4dom 6923 djudom 7159 difinfsn 7166 djudoml 7286 djudomr 7287 nninfdc 12670 |
| Copyright terms: Public domain | W3C validator |