| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brdomg | Unicode version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| brdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6834 |
. . . 4
| |
| 2 | 1 | brrelex1i 4719 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | f1f 5483 |
. . . . 5
| |
| 5 | fdm 5433 |
. . . . . 6
| |
| 6 | vex 2775 |
. . . . . . 7
| |
| 7 | 6 | dmex 4946 |
. . . . . 6
|
| 8 | 5, 7 | eqeltrrdi 2297 |
. . . . 5
|
| 9 | 4, 8 | syl 14 |
. . . 4
|
| 10 | 9 | exlimiv 1621 |
. . 3
|
| 11 | 10 | a1i 9 |
. 2
|
| 12 | f1eq2 5479 |
. . . . 5
| |
| 13 | 12 | exbidv 1848 |
. . . 4
|
| 14 | f1eq3 5480 |
. . . . 5
| |
| 15 | 14 | exbidv 1848 |
. . . 4
|
| 16 | df-dom 6831 |
. . . 4
| |
| 17 | 13, 15, 16 | brabg 4316 |
. . 3
|
| 18 | 17 | expcom 116 |
. 2
|
| 19 | 3, 11, 18 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 df-dm 4686 df-rn 4687 df-fn 5275 df-f 5276 df-f1 5277 df-dom 6831 |
| This theorem is referenced by: brdomi 6840 brdom 6841 f1dom2g 6849 f1domg 6851 dom3d 6867 phplem4dom 6961 djudom 7197 difinfsn 7204 djudoml 7333 djudomr 7334 nninfdc 12857 |
| Copyright terms: Public domain | W3C validator |