ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemen Unicode version

Theorem ennnfonelemen 12581
Description: Lemma for ennnfone 12585. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemen  |-  ( ph  ->  A  ~~  NN )
Distinct variable groups:    A, j, x, y    i, F, j, k, n    x, F, y, i, k    j, G    i, H, j, k, n    x, H, y   
j, J    i, L, j, x, y    i, N, j, k, n    x, N, y    ph, i, j, k, n    ph, x, y
Allowed substitution hints:    A( i, k, n)    G( x, y, i, k, n)    J( x, y, i, k, n)    L( k, n)

Proof of Theorem ennnfonelemen
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . . . 7  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . . . 7  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . . . 7  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . . . 7  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . . . 7  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . . . 7  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . . . . 7  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12578 . . . . . 6  |-  ( ph  ->  L : dom  L -1-1-> A )
101, 2, 3, 4, 5, 6, 7, 8ennnfonelemdm 12580 . . . . . . 7  |-  ( ph  ->  dom  L  =  om )
11 f1eq2 5456 . . . . . . 7  |-  ( dom 
L  =  om  ->  ( L : dom  L -1-1-> A  <-> 
L : om -1-1-> A
) )
1210, 11syl 14 . . . . . 6  |-  ( ph  ->  ( L : dom  L
-1-1-> A  <->  L : om -1-1-> A
) )
139, 12mpbid 147 . . . . 5  |-  ( ph  ->  L : om -1-1-> A
)
141, 2, 3, 4, 5, 6, 7, 8ennnfonelemrn 12579 . . . . 5  |-  ( ph  ->  ran  L  =  A )
15 dff1o5 5510 . . . . 5  |-  ( L : om -1-1-onto-> A  <->  ( L : om
-1-1-> A  /\  ran  L  =  A ) )
1613, 14, 15sylanbrc 417 . . . 4  |-  ( ph  ->  L : om -1-1-onto-> A )
17 omex 4626 . . . . 5  |-  om  e.  _V
1817f1oen 6815 . . . 4  |-  ( L : om -1-1-onto-> A  ->  om  ~~  A
)
1916, 18syl 14 . . 3  |-  ( ph  ->  om  ~~  A )
2019ensymd 6839 . 2  |-  ( ph  ->  A  ~~  om )
21 nnenom 10508 . . 3  |-  NN  ~~  om
2221ensymi 6838 . 2  |-  om  ~~  NN
23 entr 6840 . 2  |-  ( ( A  ~~  om  /\  om 
~~  NN )  ->  A  ~~  NN )
2420, 22, 23sylancl 413 1  |-  ( ph  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473    u. cun 3152   (/)c0 3447   ifcif 3558   {csn 3619   <.cop 3622   U_ciun 3913   class class class wbr 4030    |-> cmpt 4091   suc csuc 4397   omcom 4623   `'ccnv 4659   dom cdm 4660   ran crn 4661   "cima 4663   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919    e. cmpo 5921  freccfrec 6445    ^pm cpm 6705    ~~ cen 6794   0cc0 7874   1c1 7875    + caddc 7877    - cmin 8192   NNcn 8984   NN0cn0 9243   ZZcz 9320    seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-er 6589  df-pm 6707  df-en 6797  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by:  ennnfonelemnn0  12582
  Copyright terms: Public domain W3C validator