ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq23 Unicode version

Theorem f1oeq23 5495
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23  |-  ( ( A  =  B  /\  C  =  D )  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 5493 . 2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
2 f1oeq3 5494 . 2  |-  ( C  =  D  ->  ( F : B -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  seqf1og  10598  zfz1isolem1  10917
  Copyright terms: Public domain W3C validator