ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq23 Unicode version

Theorem f1oeq23 5262
Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
Assertion
Ref Expression
f1oeq23  |-  ( ( A  =  B  /\  C  =  D )  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )

Proof of Theorem f1oeq23
StepHypRef Expression
1 f1oeq2 5260 . 2  |-  ( A  =  B  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> C ) )
2 f1oeq3 5261 . 2  |-  ( C  =  D  ->  ( F : B -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )
31, 2sylan9bb 451 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( F : A -1-1-onto-> C  <->  F : B -1-1-onto-> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290   -1-1-onto->wf1o 5029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-in 3008  df-ss 3015  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037
This theorem is referenced by:  zfz1isolem1  10308
  Copyright terms: Public domain W3C validator