| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq23 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.) |
| Ref | Expression |
|---|---|
| f1oeq23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 5494 |
. 2
| |
| 2 | f1oeq3 5495 |
. 2
| |
| 3 | 1, 2 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: seqf1og 10615 zfz1isolem1 10934 |
| Copyright terms: Public domain | W3C validator |