ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3 Unicode version

Theorem f1oeq3 5514
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 5480 . . 3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
2 foeq3 5498 . . 3  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( F : C -1-1-> A  /\  F : C -onto-> A )  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) ) )
4 df-f1o 5279 . 2  |-  ( F : C -1-1-onto-> A  <->  ( F : C -1-1-> A  /\  F : C -onto-> A ) )
5 df-f1o 5279 . 2  |-  ( F : C -1-1-onto-> B  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   -1-1->wf1 5269   -onto->wfo 5270   -1-1-onto->wf1o 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279
This theorem is referenced by:  f1oeq23  5515  f1oeq123d  5518  f1oeq3d  5521  f1ores  5539  resdif  5546  f1osng  5565  f1oresrab  5747  isoeq5  5876  isoini2  5890  mapsnf1o  6826  breng  6836  bren  6837  xpcomf1o  6922  frechashgf1o  10575  sumeq1  11699  fisumss  11736  fsumcnv  11781  prodeq1f  11896  4sqlem11  12757  ennnfonelemhf1o  12817  ennnfonelemex  12818  ssnnctlemct  12850
  Copyright terms: Public domain W3C validator