ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3 Unicode version

Theorem f1oeq3 5422
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 5389 . . 3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
2 foeq3 5407 . . 3  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )
31, 2anbi12d 465 . 2  |-  ( A  =  B  ->  (
( F : C -1-1-> A  /\  F : C -onto-> A )  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) ) )
4 df-f1o 5194 . 2  |-  ( F : C -1-1-onto-> A  <->  ( F : C -1-1-> A  /\  F : C -onto-> A ) )
5 df-f1o 5194 . 2  |-  ( F : C -1-1-onto-> B  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) )
63, 4, 53bitr4g 222 1  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   -1-1->wf1 5184   -onto->wfo 5185   -1-1-onto->wf1o 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3121  df-ss 3128  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194
This theorem is referenced by:  f1oeq23  5423  f1oeq123d  5426  f1oeq3d  5428  f1ores  5446  resdif  5453  f1osng  5472  f1oresrab  5649  isoeq5  5772  isoini2  5786  mapsnf1o  6699  bren  6709  xpcomf1o  6787  frechashgf1o  10359  sumeq1  11292  fisumss  11329  fsumcnv  11374  prodeq1f  11489  ennnfonelemhf1o  12342  ennnfonelemex  12343  ssnnctlemct  12375
  Copyright terms: Public domain W3C validator