| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq3 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq3 5528 |
. . 3
| |
| 2 | foeq3 5546 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5325 |
. 2
| |
| 5 | df-f1o 5325 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1oeq23 5563 f1oeq123d 5566 f1oeq3d 5569 f1ores 5587 resdif 5594 f1osng 5614 f1oresrab 5800 isoeq5 5929 isoini2 5943 mapsnf1o 6884 breng 6894 bren 6895 xpcomf1o 6984 frechashgf1o 10650 sumeq1 11866 fisumss 11903 fsumcnv 11948 prodeq1f 12063 4sqlem11 12924 ennnfonelemhf1o 12984 ennnfonelemex 12985 ssnnctlemct 13017 uspgredgiedg 15976 |
| Copyright terms: Public domain | W3C validator |