Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq3 | Unicode version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq3 5400 | . . 3 | |
2 | foeq3 5418 | . . 3 | |
3 | 1, 2 | anbi12d 470 | . 2 |
4 | df-f1o 5205 | . 2 | |
5 | df-f1o 5205 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wf1 5195 wfo 5196 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1oeq23 5434 f1oeq123d 5437 f1oeq3d 5439 f1ores 5457 resdif 5464 f1osng 5483 f1oresrab 5661 isoeq5 5784 isoini2 5798 mapsnf1o 6715 bren 6725 xpcomf1o 6803 frechashgf1o 10384 sumeq1 11318 fisumss 11355 fsumcnv 11400 prodeq1f 11515 ennnfonelemhf1o 12368 ennnfonelemex 12369 ssnnctlemct 12401 |
Copyright terms: Public domain | W3C validator |