| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq3 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq3 5460 |
. . 3
| |
| 2 | foeq3 5478 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5265 |
. 2
| |
| 5 | df-f1o 5265 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 |
| This theorem is referenced by: f1oeq23 5495 f1oeq123d 5498 f1oeq3d 5501 f1ores 5519 resdif 5526 f1osng 5545 f1oresrab 5727 isoeq5 5852 isoini2 5866 mapsnf1o 6796 bren 6806 xpcomf1o 6884 frechashgf1o 10520 sumeq1 11520 fisumss 11557 fsumcnv 11602 prodeq1f 11717 4sqlem11 12570 ennnfonelemhf1o 12630 ennnfonelemex 12631 ssnnctlemct 12663 |
| Copyright terms: Public domain | W3C validator |