ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3 Unicode version

Theorem f1oeq3 5494
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 5460 . . 3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
2 foeq3 5478 . . 3  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( F : C -1-1-> A  /\  F : C -onto-> A )  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) ) )
4 df-f1o 5265 . 2  |-  ( F : C -1-1-onto-> A  <->  ( F : C -1-1-> A  /\  F : C -onto-> A ) )
5 df-f1o 5265 . 2  |-  ( F : C -1-1-onto-> B  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   -1-1->wf1 5255   -onto->wfo 5256   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  f1oeq23  5495  f1oeq123d  5498  f1oeq3d  5501  f1ores  5519  resdif  5526  f1osng  5545  f1oresrab  5727  isoeq5  5852  isoini2  5866  mapsnf1o  6796  bren  6806  xpcomf1o  6884  frechashgf1o  10520  sumeq1  11520  fisumss  11557  fsumcnv  11602  prodeq1f  11717  4sqlem11  12570  ennnfonelemhf1o  12630  ennnfonelemex  12631  ssnnctlemct  12663
  Copyright terms: Public domain W3C validator