ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3 Unicode version

Theorem f1oeq3 5470
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 5437 . . 3  |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
2 foeq3 5455 . . 3  |-  ( A  =  B  ->  ( F : C -onto-> A  <->  F : C -onto-> B ) )
31, 2anbi12d 473 . 2  |-  ( A  =  B  ->  (
( F : C -1-1-> A  /\  F : C -onto-> A )  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) ) )
4 df-f1o 5242 . 2  |-  ( F : C -1-1-onto-> A  <->  ( F : C -1-1-> A  /\  F : C -onto-> A ) )
5 df-f1o 5242 . 2  |-  ( F : C -1-1-onto-> B  <->  ( F : C -1-1-> B  /\  F : C -onto-> B ) )
63, 4, 53bitr4g 223 1  |-  ( A  =  B  ->  ( F : C -1-1-onto-> A  <->  F : C -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   -1-1->wf1 5232   -onto->wfo 5233   -1-1-onto->wf1o 5234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242
This theorem is referenced by:  f1oeq23  5471  f1oeq123d  5474  f1oeq3d  5477  f1ores  5495  resdif  5502  f1osng  5521  f1oresrab  5701  isoeq5  5826  isoini2  5840  mapsnf1o  6762  bren  6772  xpcomf1o  6850  frechashgf1o  10458  sumeq1  11394  fisumss  11431  fsumcnv  11476  prodeq1f  11591  4sqlem11  12432  ennnfonelemhf1o  12463  ennnfonelemex  12464  ssnnctlemct  12496
  Copyright terms: Public domain W3C validator