Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq3 | Unicode version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq3 5389 | . . 3 | |
2 | foeq3 5407 | . . 3 | |
3 | 1, 2 | anbi12d 465 | . 2 |
4 | df-f1o 5194 | . 2 | |
5 | df-f1o 5194 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wf1 5184 wfo 5185 wf1o 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 |
This theorem is referenced by: f1oeq23 5423 f1oeq123d 5426 f1oeq3d 5428 f1ores 5446 resdif 5453 f1osng 5472 f1oresrab 5649 isoeq5 5772 isoini2 5786 mapsnf1o 6699 bren 6709 xpcomf1o 6787 frechashgf1o 10359 sumeq1 11292 fisumss 11329 fsumcnv 11374 prodeq1f 11489 ennnfonelemhf1o 12342 ennnfonelemex 12343 ssnnctlemct 12375 |
Copyright terms: Public domain | W3C validator |