| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq3 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq3 5461 |
. . 3
| |
| 2 | foeq3 5479 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5266 |
. 2
| |
| 5 | df-f1o 5266 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1oeq23 5496 f1oeq123d 5499 f1oeq3d 5502 f1ores 5520 resdif 5527 f1osng 5546 f1oresrab 5728 isoeq5 5853 isoini2 5867 mapsnf1o 6797 bren 6807 xpcomf1o 6885 frechashgf1o 10522 sumeq1 11522 fisumss 11559 fsumcnv 11604 prodeq1f 11719 4sqlem11 12580 ennnfonelemhf1o 12640 ennnfonelemex 12641 ssnnctlemct 12673 |
| Copyright terms: Public domain | W3C validator |