| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq3 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq3 5480 |
. . 3
| |
| 2 | foeq3 5498 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5279 |
. 2
| |
| 5 | df-f1o 5279 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: f1oeq23 5515 f1oeq123d 5518 f1oeq3d 5521 f1ores 5539 resdif 5546 f1osng 5565 f1oresrab 5747 isoeq5 5876 isoini2 5890 mapsnf1o 6826 breng 6836 bren 6837 xpcomf1o 6922 frechashgf1o 10575 sumeq1 11699 fisumss 11736 fsumcnv 11781 prodeq1f 11896 4sqlem11 12757 ennnfonelemhf1o 12817 ennnfonelemex 12818 ssnnctlemct 12850 |
| Copyright terms: Public domain | W3C validator |