ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bb Unicode version

Theorem sylan9bb 458
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bb.1  |-  ( ph  ->  ( ps  <->  ch )
)
sylan9bb.2  |-  ( th 
->  ( ch  <->  ta )
)
Assertion
Ref Expression
sylan9bb  |-  ( (
ph  /\  th )  ->  ( ps  <->  ta )
)

Proof of Theorem sylan9bb
StepHypRef Expression
1 sylan9bb.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21adantr 274 . 2  |-  ( (
ph  /\  th )  ->  ( ps  <->  ch )
)
3 sylan9bb.2 . . 3  |-  ( th 
->  ( ch  <->  ta )
)
43adantl 275 . 2  |-  ( (
ph  /\  th )  ->  ( ch  <->  ta )
)
52, 4bitrd 187 1  |-  ( (
ph  /\  th )  ->  ( ps  <->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylan9bbr  459  bi2anan9  596  baibd  909  rbaibd  910  syl3an9b  1289  sbcomxyyz  1949  eqeq12  2167  eleq12  2219  sbhypf  2758  ceqsrex2v  2841  sseq12  3149  rexprg  3607  rextpg  3609  breq12  3966  opelopabg  4223  brabg  4224  opelopab2  4225  ralxpf  4725  rexxpf  4726  feq23  5298  f00  5354  fconstg  5359  f1oeq23  5399  f1o00  5442  f1oiso  5767  riota1a  5789  cbvmpox  5889  caovord  5982  caovord3  5984  rbropapd  6179  genpelvl  7411  genpelvu  7412  nn0ind-raph  9260  elpq  9535  xnn0xadd0  9749  elfz  9896  elfzp12  9979  shftfibg  10697  shftfib  10700  absdvdsb  11678  dvdsabsb  11679  dvdsabseq  11712  tgss2  12426  lmbr  12560  xmetec  12784
  Copyright terms: Public domain W3C validator