| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 |
|
| sylan9bb.2 |
|
| Ref | Expression |
|---|---|
| sylan9bb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | sylan9bb.2 |
. . 3
| |
| 4 | 3 | adantl 277 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 925 rbaibd 926 syl3an9b 1323 sbcomxyyz 2001 eqeq12 2220 eleq12 2272 sbhypf 2827 ceqsrex2v 2912 sseq12 3226 rexprg 3695 rextpg 3697 breq12 4064 opelopabg 4332 brabg 4333 opelopabgf 4334 opelopab2 4335 ralxpf 4842 rexxpf 4843 feq23 5431 f00 5489 fconstg 5494 f1oeq23 5535 f1o00 5580 f1oiso 5918 riota1a 5942 cbvmpox 6046 caovord 6141 caovord3 6143 rbropapd 6351 isacnm 7346 genpelvl 7660 genpelvu 7661 nn0ind-raph 9525 elpq 9805 xnn0xadd0 10024 elfz 10171 elfzp12 10256 wrd2ind 11214 shftfibg 11246 shftfib 11249 absdvdsb 12235 dvdsabsb 12236 dvdsabseq 12273 islmod 14168 znidom 14534 tgss2 14666 lmbr 14800 xmetec 15024 2lgslem1a 15680 edgiedgbg 15776 |
| Copyright terms: Public domain | W3C validator |