| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 |
|
| sylan9bb.2 |
|
| Ref | Expression |
|---|---|
| sylan9bb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | sylan9bb.2 |
. . 3
| |
| 4 | 3 | adantl 277 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 608 baibd 928 rbaibd 929 syl3an9b 1344 sbcomxyyz 2023 eqeq12 2242 eleq12 2294 sbhypf 2850 ceqsrex2v 2935 sseq12 3249 rexprg 3718 rextpg 3720 breq12 4088 opelopabg 4356 brabg 4357 opelopabgf 4358 opelopab2 4359 ralxpf 4868 rexxpf 4869 feq23 5459 f00 5517 fconstg 5522 f1oeq23 5563 f1o00 5608 f1oiso 5950 riota1a 5975 cbvmpox 6082 caovord 6177 caovord3 6179 rbropapd 6388 isacnm 7385 genpelvl 7699 genpelvu 7700 nn0ind-raph 9564 elpq 9844 xnn0xadd0 10063 elfz 10210 elfzp12 10295 wrd2ind 11255 shftfibg 11331 shftfib 11334 absdvdsb 12320 dvdsabsb 12321 dvdsabseq 12358 islmod 14255 znidom 14621 tgss2 14753 lmbr 14887 xmetec 15111 2lgslem1a 15767 edgiedgbg 15865 |
| Copyright terms: Public domain | W3C validator |