Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9bb | Unicode version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | |
sylan9bb.2 |
Ref | Expression |
---|---|
sylan9bb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | sylan9bb.2 | . . 3 | |
4 | 3 | adantl 275 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylan9bbr 459 bi2anan9 596 baibd 909 rbaibd 910 syl3an9b 1289 sbcomxyyz 1949 eqeq12 2167 eleq12 2219 sbhypf 2758 ceqsrex2v 2841 sseq12 3149 rexprg 3607 rextpg 3609 breq12 3966 opelopabg 4223 brabg 4224 opelopab2 4225 ralxpf 4725 rexxpf 4726 feq23 5298 f00 5354 fconstg 5359 f1oeq23 5399 f1o00 5442 f1oiso 5767 riota1a 5789 cbvmpox 5889 caovord 5982 caovord3 5984 rbropapd 6179 genpelvl 7411 genpelvu 7412 nn0ind-raph 9260 elpq 9535 xnn0xadd0 9749 elfz 9896 elfzp12 9979 shftfibg 10697 shftfib 10700 absdvdsb 11678 dvdsabsb 11679 dvdsabseq 11712 tgss2 12426 lmbr 12560 xmetec 12784 |
Copyright terms: Public domain | W3C validator |