| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 |
|
| sylan9bb.2 |
|
| Ref | Expression |
|---|---|
| sylan9bb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | sylan9bb.2 |
. . 3
| |
| 4 | 3 | adantl 277 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 925 rbaibd 926 syl3an9b 1323 sbcomxyyz 2000 eqeq12 2218 eleq12 2270 sbhypf 2822 ceqsrex2v 2905 sseq12 3218 rexprg 3685 rextpg 3687 breq12 4050 opelopabg 4315 brabg 4316 opelopabgf 4317 opelopab2 4318 ralxpf 4825 rexxpf 4826 feq23 5413 f00 5469 fconstg 5474 f1oeq23 5515 f1o00 5559 f1oiso 5897 riota1a 5921 cbvmpox 6025 caovord 6120 caovord3 6122 rbropapd 6330 isacnm 7317 genpelvl 7627 genpelvu 7628 nn0ind-raph 9492 elpq 9772 xnn0xadd0 9991 elfz 10138 elfzp12 10223 shftfibg 11164 shftfib 11167 absdvdsb 12153 dvdsabsb 12154 dvdsabseq 12191 islmod 14086 znidom 14452 tgss2 14584 lmbr 14718 xmetec 14942 2lgslem1a 15598 edgiedgbg 15692 |
| Copyright terms: Public domain | W3C validator |