| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bb | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bb.1 |
|
| sylan9bb.2 |
|
| Ref | Expression |
|---|---|
| sylan9bb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | sylan9bb.2 |
. . 3
| |
| 4 | 3 | adantl 277 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan9bbr 463 bi2anan9 606 baibd 925 rbaibd 926 syl3an9b 1323 sbcomxyyz 2000 eqeq12 2218 eleq12 2270 sbhypf 2822 ceqsrex2v 2905 sseq12 3218 rexprg 3685 rextpg 3687 breq12 4049 opelopabg 4314 brabg 4315 opelopabgf 4316 opelopab2 4317 ralxpf 4824 rexxpf 4825 feq23 5411 f00 5467 fconstg 5472 f1oeq23 5513 f1o00 5557 f1oiso 5895 riota1a 5919 cbvmpox 6023 caovord 6118 caovord3 6120 rbropapd 6328 isacnm 7315 genpelvl 7625 genpelvu 7626 nn0ind-raph 9490 elpq 9770 xnn0xadd0 9989 elfz 10136 elfzp12 10221 shftfibg 11131 shftfib 11134 absdvdsb 12120 dvdsabsb 12121 dvdsabseq 12158 islmod 14053 znidom 14419 tgss2 14551 lmbr 14685 xmetec 14909 2lgslem1a 15565 |
| Copyright terms: Public domain | W3C validator |