ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orn Unicode version

Theorem f1orn 5582
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 5577 . 2  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F ) )
2 eqid 2229 . . 3  |-  ran  F  =  ran  F
3 df-3an 1004 . . 3  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F )  <->  ( ( F  Fn  A  /\  Fun  `' F )  /\  ran  F  =  ran  F ) )
42, 3mpbiran2 947 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F )  <->  ( F  Fn  A  /\  Fun  `' F ) )
51, 4bitri 184 1  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   `'ccnv 4718   ran crn 4720   Fun wfun 5312    Fn wfn 5313   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  f1f1orn  5583
  Copyright terms: Public domain W3C validator