ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orn Unicode version

Theorem f1orn 5510
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 5505 . 2  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F ) )
2 eqid 2193 . . 3  |-  ran  F  =  ran  F
3 df-3an 982 . . 3  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F )  <->  ( ( F  Fn  A  /\  Fun  `' F )  /\  ran  F  =  ran  F ) )
42, 3mpbiran2 943 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F )  <->  ( F  Fn  A  /\  Fun  `' F ) )
51, 4bitri 184 1  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   `'ccnv 4658   ran crn 4660   Fun wfun 5248    Fn wfn 5249   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  f1f1orn  5511
  Copyright terms: Public domain W3C validator