ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f1orn Unicode version

Theorem f1f1orn 5474
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1f1orn  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )

Proof of Theorem f1f1orn
StepHypRef Expression
1 f1fn 5425 . 2  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 df-f1 5223 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
32simprbi 275 . 2  |-  ( F : A -1-1-> B  ->  Fun  `' F )
4 f1orn 5473 . 2  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )
51, 3, 4sylanbrc 417 1  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   `'ccnv 4627   ran crn 4629   Fun wfun 5212    Fn wfn 5213   -->wf 5214   -1-1->wf1 5215   -1-1-onto->wf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  f1ores  5478  f1cnv  5487  f1cocnv1  5493  f1ocnvfvrneq  5785  ssenen  6853  f1dmvrnfibi  6945  cc2lem  7267  xpsff1o2  12775
  Copyright terms: Public domain W3C validator