| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f1orn | Unicode version | ||
| Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1f1orn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5533 |
. 2
| |
| 2 | df-f1 5323 |
. . 3
| |
| 3 | 2 | simprbi 275 |
. 2
|
| 4 | f1orn 5582 |
. 2
| |
| 5 | 1, 3, 4 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1ores 5587 f1cnv 5596 f1cocnv1 5602 f1ocnvfvrneq 5906 ssenen 7012 f1dmvrnfibi 7111 cc2lem 7452 4sqlem11 12924 xpsff1o2 13384 imasmndf1 13487 imasgrpf1 13649 conjsubgen 13815 imasrngf1 13920 imasringf1 14028 usgrf1o 15972 uspgrf1oedg 15974 |
| Copyright terms: Public domain | W3C validator |