| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f1orn | Unicode version | ||
| Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1f1orn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5485 |
. 2
| |
| 2 | df-f1 5277 |
. . 3
| |
| 3 | 2 | simprbi 275 |
. 2
|
| 4 | f1orn 5534 |
. 2
| |
| 5 | 1, 3, 4 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: f1ores 5539 f1cnv 5548 f1cocnv1 5554 f1ocnvfvrneq 5853 ssenen 6950 f1dmvrnfibi 7048 cc2lem 7380 4sqlem11 12757 xpsff1o2 13216 imasmndf1 13319 imasgrpf1 13481 conjsubgen 13647 imasrngf1 13752 imasringf1 13860 |
| Copyright terms: Public domain | W3C validator |