| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f1orn | Unicode version | ||
| Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1f1orn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5505 |
. 2
| |
| 2 | df-f1 5295 |
. . 3
| |
| 3 | 2 | simprbi 275 |
. 2
|
| 4 | f1orn 5554 |
. 2
| |
| 5 | 1, 3, 4 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1ores 5559 f1cnv 5568 f1cocnv1 5574 f1ocnvfvrneq 5874 ssenen 6973 f1dmvrnfibi 7072 cc2lem 7413 4sqlem11 12839 xpsff1o2 13298 imasmndf1 13401 imasgrpf1 13563 conjsubgen 13729 imasrngf1 13834 imasringf1 13942 |
| Copyright terms: Public domain | W3C validator |