| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dff1o5 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| dff1o5 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f1o 5265 | 
. 2
 | |
| 2 | dffo2 5484 | 
. . . 4
 | |
| 3 | f1f 5463 | 
. . . . 5
 | |
| 4 | 3 | biantrurd 305 | 
. . . 4
 | 
| 5 | 2, 4 | bitr4id 199 | 
. . 3
 | 
| 6 | 5 | pm5.32i 454 | 
. 2
 | 
| 7 | 1, 6 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: f1orescnv 5520 f1finf1o 7013 djuinr 7129 eninl 7163 eninr 7164 frec2uzf1od 10498 ennnfonelemex 12631 ennnfonelemen 12638 ssnnctlemct 12663 2lgslem1b 15330 pwf1oexmid 15644 | 
| Copyright terms: Public domain | W3C validator |