| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff1o5 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5279 |
. 2
| |
| 2 | dffo2 5504 |
. . . 4
| |
| 3 | f1f 5483 |
. . . . 5
| |
| 4 | 3 | biantrurd 305 |
. . . 4
|
| 5 | 2, 4 | bitr4id 199 |
. . 3
|
| 6 | 5 | pm5.32i 454 |
. 2
|
| 7 | 1, 6 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: f1orescnv 5540 f1finf1o 7051 djuinr 7167 eninl 7201 eninr 7202 frec2uzf1od 10553 ennnfonelemex 12818 ennnfonelemen 12825 ssnnctlemct 12850 2lgslem1b 15599 pwf1oexmid 15973 |
| Copyright terms: Public domain | W3C validator |