ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o5 Unicode version

Theorem dff1o5 5581
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 5325 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 dffo2 5552 . . . 4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
3 f1f 5531 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
43biantrurd 305 . . . 4  |-  ( F : A -1-1-> B  -> 
( ran  F  =  B 
<->  ( F : A --> B  /\  ran  F  =  B ) ) )
52, 4bitr4id 199 . . 3  |-  ( F : A -1-1-> B  -> 
( F : A -onto-> B 
<->  ran  F  =  B ) )
65pm5.32i 454 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
71, 6bitri 184 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   ran crn 4720   -->wf 5314   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  f1orescnv  5588  f1finf1o  7114  djuinr  7230  eninl  7264  eninr  7265  frec2uzf1od  10628  ennnfonelemex  12985  ennnfonelemen  12992  ssnnctlemct  13017  2lgslem1b  15768  ausgrusgrben  15966  pwf1oexmid  16365
  Copyright terms: Public domain W3C validator