| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff1o5 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5325 |
. 2
| |
| 2 | dffo2 5552 |
. . . 4
| |
| 3 | f1f 5531 |
. . . . 5
| |
| 4 | 3 | biantrurd 305 |
. . . 4
|
| 5 | 2, 4 | bitr4id 199 |
. . 3
|
| 6 | 5 | pm5.32i 454 |
. 2
|
| 7 | 1, 6 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1orescnv 5588 f1finf1o 7114 djuinr 7230 eninl 7264 eninr 7265 frec2uzf1od 10628 ennnfonelemex 12985 ennnfonelemen 12992 ssnnctlemct 13017 2lgslem1b 15768 ausgrusgrben 15966 pwf1oexmid 16365 |
| Copyright terms: Public domain | W3C validator |