ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o5 Unicode version

Theorem dff1o5 5533
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 5279 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 dffo2 5504 . . . 4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
3 f1f 5483 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
43biantrurd 305 . . . 4  |-  ( F : A -1-1-> B  -> 
( ran  F  =  B 
<->  ( F : A --> B  /\  ran  F  =  B ) ) )
52, 4bitr4id 199 . . 3  |-  ( F : A -1-1-> B  -> 
( F : A -onto-> B 
<->  ran  F  =  B ) )
65pm5.32i 454 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
71, 6bitri 184 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   ran crn 4677   -->wf 5268   -1-1->wf1 5269   -onto->wfo 5270   -1-1-onto->wf1o 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279
This theorem is referenced by:  f1orescnv  5540  f1finf1o  7051  djuinr  7167  eninl  7201  eninr  7202  frec2uzf1od  10553  ennnfonelemex  12818  ennnfonelemen  12825  ssnnctlemct  12850  2lgslem1b  15599  pwf1oexmid  15973
  Copyright terms: Public domain W3C validator