ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o5 Unicode version

Theorem dff1o5 5376
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 5130 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 f1f 5328 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
32biantrurd 303 . . . 4  |-  ( F : A -1-1-> B  -> 
( ran  F  =  B 
<->  ( F : A --> B  /\  ran  F  =  B ) ) )
4 dffo2 5349 . . . 4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
53, 4syl6rbbr 198 . . 3  |-  ( F : A -1-1-> B  -> 
( F : A -onto-> B 
<->  ran  F  =  B ) )
65pm5.32i 449 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
71, 6bitri 183 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   ran crn 4540   -->wf 5119   -1-1->wf1 5120   -onto->wfo 5121   -1-1-onto->wf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-in 3077  df-ss 3084  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130
This theorem is referenced by:  f1orescnv  5383  f1finf1o  6835  djuinr  6948  eninl  6982  eninr  6983  frec2uzf1od  10186  ennnfonelemex  11933  ennnfonelemen  11940  pwf1oexmid  13247
  Copyright terms: Public domain W3C validator