ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o5 Unicode version

Theorem dff1o5 5451
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 5205 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 dffo2 5424 . . . 4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
3 f1f 5403 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
43biantrurd 303 . . . 4  |-  ( F : A -1-1-> B  -> 
( ran  F  =  B 
<->  ( F : A --> B  /\  ran  F  =  B ) ) )
52, 4bitr4id 198 . . 3  |-  ( F : A -1-1-> B  -> 
( F : A -onto-> B 
<->  ran  F  =  B ) )
65pm5.32i 451 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
71, 6bitri 183 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   ran crn 4612   -->wf 5194   -1-1->wf1 5195   -onto->wfo 5196   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  f1orescnv  5458  f1finf1o  6924  djuinr  7040  eninl  7074  eninr  7075  frec2uzf1od  10362  ennnfonelemex  12369  ennnfonelemen  12376  ssnnctlemct  12401  pwf1oexmid  14032
  Copyright terms: Public domain W3C validator