![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1orn | GIF version |
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1orn | β’ (πΉ:π΄β1-1-ontoβran πΉ β (πΉ Fn π΄ β§ Fun β‘πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 5468 | . 2 β’ (πΉ:π΄β1-1-ontoβran πΉ β (πΉ Fn π΄ β§ Fun β‘πΉ β§ ran πΉ = ran πΉ)) | |
2 | eqid 2177 | . . 3 β’ ran πΉ = ran πΉ | |
3 | df-3an 980 | . . 3 β’ ((πΉ Fn π΄ β§ Fun β‘πΉ β§ ran πΉ = ran πΉ) β ((πΉ Fn π΄ β§ Fun β‘πΉ) β§ ran πΉ = ran πΉ)) | |
4 | 2, 3 | mpbiran2 941 | . 2 β’ ((πΉ Fn π΄ β§ Fun β‘πΉ β§ ran πΉ = ran πΉ) β (πΉ Fn π΄ β§ Fun β‘πΉ)) |
5 | 1, 4 | bitri 184 | 1 β’ (πΉ:π΄β1-1-ontoβran πΉ β (πΉ Fn π΄ β§ Fun β‘πΉ)) |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 β wb 105 β§ w3a 978 = wceq 1353 β‘ccnv 4627 ran crn 4629 Fun wfun 5212 Fn wfn 5213 β1-1-ontoβwf1o 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3137 df-ss 3144 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 |
This theorem is referenced by: f1f1orn 5474 |
Copyright terms: Public domain | W3C validator |