ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmi Unicode version

Theorem fdmi 5375
Description: The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
Hypothesis
Ref Expression
fdmi.1  |-  F : A
--> B
Assertion
Ref Expression
fdmi  |-  dom  F  =  A

Proof of Theorem fdmi
StepHypRef Expression
1 fdmi.1 . 2  |-  F : A
--> B
2 fdm 5373 . 2  |-  ( F : A --> B  ->  dom  F  =  A )
31, 2ax-mp 5 1  |-  dom  F  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353   dom cdm 4628   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5221  df-f 5222
This theorem is referenced by:  suplocexprlemdisj  7721  suplocexprlemub  7724  eluzel2  9535  inftonninf  10443  qtopbasss  14060  retopbas  14062  tgqioo  14086  dvexp  14214  efcn  14228  pilem3  14243
  Copyright terms: Public domain W3C validator