ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inftonninf Unicode version

Theorem inftonninf 10107
Description: The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
inftonninf  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem inftonninf
StepHypRef Expression
1 fxnn0nninf.i . . 3  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5376 . 2  |-  ( I `
+oo )  =  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )
3 pnf0xnn0 8951 . . 3  |- +oo  e. NN0*
4 omex 4467 . . . 4  |-  om  e.  _V
5 1oex 6275 . . . . 5  |-  1o  e.  _V
65snex 4069 . . . 4  |-  { 1o }  e.  _V
74, 6xpex 4614 . . 3  |-  ( om 
X.  { 1o }
)  e.  _V
8 pnfnre 7731 . . . . . 6  |- +oo  e/  RR
98neli 2379 . . . . 5  |-  -. +oo  e.  RR
10 nn0re 8890 . . . . 5  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
119, 10mto 634 . . . 4  |-  -. +oo  e.  NN0
12 fxnn0nninf.g . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
13 fxnn0nninf.f . . . . . . 7  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
1412, 13fnn0nninf 10103 . . . . . 6  |-  ( F  o.  `' G ) : NN0 -->
1514fdmi 5238 . . . . 5  |-  dom  ( F  o.  `' G
)  =  NN0
1615eleq2i 2181 . . . 4  |-  ( +oo  e.  dom  ( F  o.  `' G )  <-> +oo  e.  NN0 )
1711, 16mtbir 643 . . 3  |-  -. +oo  e.  dom  ( F  o.  `' G )
18 fsnunfv 5575 . . 3  |-  ( ( +oo  e. NN0*  /\  ( om  X.  { 1o }
)  e.  _V  /\  -. +oo  e.  dom  ( F  o.  `' G
) )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
) )
193, 7, 17, 18mp3an 1298 . 2  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
)
20 fconstmpt 4546 . 2  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
212, 19, 203eqtri 2139 1  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1314    e. wcel 1463   _Vcvv 2657    u. cun 3035   (/)c0 3329   ifcif 3440   {csn 3493   <.cop 3496    |-> cmpt 3949   omcom 4464    X. cxp 4497   `'ccnv 4498   dom cdm 4499    o. ccom 4503   ` cfv 5081  (class class class)co 5728  freccfrec 6241   1oc1o 6260  ℕxnninf 6955   RRcr 7546   0cc0 7547   1c1 7548    + caddc 7550   +oocpnf 7721   NN0cn0 8881  NN0*cxnn0 8944   ZZcz 8958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-recs 6156  df-frec 6242  df-1o 6267  df-2o 6268  df-map 6498  df-nninf 6957  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-xnn0 8945  df-z 8959  df-uz 9229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator