ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inftonninf Unicode version

Theorem inftonninf 10619
Description: The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
inftonninf  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem inftonninf
StepHypRef Expression
1 fxnn0nninf.i . . 3  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5595 . 2  |-  ( I `
+oo )  =  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )
3 pnf0xnn0 9395 . . 3  |- +oo  e. NN0*
4 omex 4654 . . . 4  |-  om  e.  _V
5 1oex 6528 . . . . 5  |-  1o  e.  _V
65snex 4240 . . . 4  |-  { 1o }  e.  _V
74, 6xpex 4803 . . 3  |-  ( om 
X.  { 1o }
)  e.  _V
8 pnfnre 8144 . . . . . 6  |- +oo  e/  RR
98neli 2474 . . . . 5  |-  -. +oo  e.  RR
10 nn0re 9334 . . . . 5  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
119, 10mto 664 . . . 4  |-  -. +oo  e.  NN0
12 fxnn0nninf.g . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
13 fxnn0nninf.f . . . . . . 7  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
1412, 13fnn0nninf 10615 . . . . . 6  |-  ( F  o.  `' G ) : NN0 -->
1514fdmi 5448 . . . . 5  |-  dom  ( F  o.  `' G
)  =  NN0
1615eleq2i 2273 . . . 4  |-  ( +oo  e.  dom  ( F  o.  `' G )  <-> +oo  e.  NN0 )
1711, 16mtbir 673 . . 3  |-  -. +oo  e.  dom  ( F  o.  `' G )
18 fsnunfv 5803 . . 3  |-  ( ( +oo  e. NN0*  /\  ( om  X.  { 1o }
)  e.  _V  /\  -. +oo  e.  dom  ( F  o.  `' G
) )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
) )
193, 7, 17, 18mp3an 1350 . 2  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
)
20 fconstmpt 4735 . 2  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
212, 19, 203eqtri 2231 1  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373    e. wcel 2177   _Vcvv 2773    u. cun 3168   (/)c0 3464   ifcif 3575   {csn 3638   <.cop 3641    |-> cmpt 4116   omcom 4651    X. cxp 4686   `'ccnv 4687   dom cdm 4688    o. ccom 4692   ` cfv 5285  (class class class)co 5962  freccfrec 6494   1oc1o 6513  ℕxnninf 7242   RRcr 7954   0cc0 7955   1c1 7956    + caddc 7958   +oocpnf 8134   NN0cn0 9325  NN0*cxnn0 9388   ZZcz 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-map 6755  df-nninf 7243  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-xnn0 9389  df-z 9403  df-uz 9679
This theorem is referenced by:  nninfctlemfo  12446
  Copyright terms: Public domain W3C validator