ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inftonninf Unicode version

Theorem inftonninf 10568
Description: The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
inftonninf  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem inftonninf
StepHypRef Expression
1 fxnn0nninf.i . . 3  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5571 . 2  |-  ( I `
+oo )  =  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )
3 pnf0xnn0 9347 . . 3  |- +oo  e. NN0*
4 omex 4639 . . . 4  |-  om  e.  _V
5 1oex 6500 . . . . 5  |-  1o  e.  _V
65snex 4228 . . . 4  |-  { 1o }  e.  _V
74, 6xpex 4788 . . 3  |-  ( om 
X.  { 1o }
)  e.  _V
8 pnfnre 8096 . . . . . 6  |- +oo  e/  RR
98neli 2472 . . . . 5  |-  -. +oo  e.  RR
10 nn0re 9286 . . . . 5  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
119, 10mto 663 . . . 4  |-  -. +oo  e.  NN0
12 fxnn0nninf.g . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
13 fxnn0nninf.f . . . . . . 7  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
1412, 13fnn0nninf 10564 . . . . . 6  |-  ( F  o.  `' G ) : NN0 -->
1514fdmi 5427 . . . . 5  |-  dom  ( F  o.  `' G
)  =  NN0
1615eleq2i 2271 . . . 4  |-  ( +oo  e.  dom  ( F  o.  `' G )  <-> +oo  e.  NN0 )
1711, 16mtbir 672 . . 3  |-  -. +oo  e.  dom  ( F  o.  `' G )
18 fsnunfv 5775 . . 3  |-  ( ( +oo  e. NN0*  /\  ( om  X.  { 1o }
)  e.  _V  /\  -. +oo  e.  dom  ( F  o.  `' G
) )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
) )
193, 7, 17, 18mp3an 1349 . 2  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
)
20 fconstmpt 4720 . 2  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
212, 19, 203eqtri 2229 1  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1372    e. wcel 2175   _Vcvv 2771    u. cun 3163   (/)c0 3459   ifcif 3570   {csn 3632   <.cop 3635    |-> cmpt 4104   omcom 4636    X. cxp 4671   `'ccnv 4672   dom cdm 4673    o. ccom 4677   ` cfv 5268  (class class class)co 5934  freccfrec 6466   1oc1o 6485  ℕxnninf 7203   RRcr 7906   0cc0 7907   1c1 7908    + caddc 7910   +oocpnf 8086   NN0cn0 9277  NN0*cxnn0 9340   ZZcz 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-map 6727  df-nninf 7204  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-xnn0 9341  df-z 9355  df-uz 9631
This theorem is referenced by:  nninfctlemfo  12280
  Copyright terms: Public domain W3C validator