ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inftonninf Unicode version

Theorem inftonninf 10460
Description: The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
inftonninf  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem inftonninf
StepHypRef Expression
1 fxnn0nninf.i . . 3  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5531 . 2  |-  ( I `
+oo )  =  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )
3 pnf0xnn0 9265 . . 3  |- +oo  e. NN0*
4 omex 4607 . . . 4  |-  om  e.  _V
5 1oex 6443 . . . . 5  |-  1o  e.  _V
65snex 4200 . . . 4  |-  { 1o }  e.  _V
74, 6xpex 4756 . . 3  |-  ( om 
X.  { 1o }
)  e.  _V
8 pnfnre 8018 . . . . . 6  |- +oo  e/  RR
98neli 2457 . . . . 5  |-  -. +oo  e.  RR
10 nn0re 9204 . . . . 5  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
119, 10mto 663 . . . 4  |-  -. +oo  e.  NN0
12 fxnn0nninf.g . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
13 fxnn0nninf.f . . . . . . 7  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
1412, 13fnn0nninf 10456 . . . . . 6  |-  ( F  o.  `' G ) : NN0 -->
1514fdmi 5388 . . . . 5  |-  dom  ( F  o.  `' G
)  =  NN0
1615eleq2i 2256 . . . 4  |-  ( +oo  e.  dom  ( F  o.  `' G )  <-> +oo  e.  NN0 )
1711, 16mtbir 672 . . 3  |-  -. +oo  e.  dom  ( F  o.  `' G )
18 fsnunfv 5733 . . 3  |-  ( ( +oo  e. NN0*  /\  ( om  X.  { 1o }
)  e.  _V  /\  -. +oo  e.  dom  ( F  o.  `' G
) )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
) )
193, 7, 17, 18mp3an 1348 . 2  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` +oo )  =  ( om  X.  { 1o }
)
20 fconstmpt 4688 . 2  |-  ( om 
X.  { 1o }
)  =  ( x  e.  om  |->  1o )
212, 19, 203eqtri 2214 1  |-  ( I `
+oo )  =  ( x  e.  om  |->  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2160   _Vcvv 2752    u. cun 3142   (/)c0 3437   ifcif 3549   {csn 3607   <.cop 3610    |-> cmpt 4079   omcom 4604    X. cxp 4639   `'ccnv 4640   dom cdm 4641    o. ccom 4645   ` cfv 5231  (class class class)co 5891  freccfrec 6409   1oc1o 6428  ℕxnninf 7137   RRcr 7829   0cc0 7830   1c1 7831    + caddc 7833   +oocpnf 8008   NN0cn0 9195  NN0*cxnn0 9258   ZZcz 9272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-addass 7932  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-0id 7938  ax-rnegex 7939  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-ltadd 7946
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-recs 6324  df-frec 6410  df-1o 6435  df-2o 6436  df-map 6668  df-nninf 7138  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-inn 8939  df-n0 9196  df-xnn0 9259  df-z 9273  df-uz 9548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator