ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemub Unicode version

Theorem suplocexprlemub 7785
Description: Lemma for suplocexpr 7787. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemub  |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
Distinct variable groups:    u, A, w, y    x, A, z, u, y    w, B    ph, u, w, y    ph, x, z    z, w
Allowed substitution hints:    B( x, y, z, u)

Proof of Theorem suplocexprlemub
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  B  <P  y )
2 suplocexpr.m . . . . . . . 8  |-  ( ph  ->  E. x  x  e.  A )
3 suplocexpr.ub . . . . . . . 8  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
4 suplocexpr.loc . . . . . . . 8  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
5 suplocexpr.b . . . . . . . 8  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
62, 3, 4, 5suplocexprlemex 7784 . . . . . . 7  |-  ( ph  ->  B  e.  P. )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  B  e.  P. )
82, 3, 4suplocexprlemss 7777 . . . . . . . 8  |-  ( ph  ->  A  C_  P. )
98ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  A  C_ 
P. )
10 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  y  e.  A )
119, 10sseldd 3181 . . . . . 6  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  y  e.  P. )
12 ltdfpr 7568 . . . . . 6  |-  ( ( B  e.  P.  /\  y  e.  P. )  ->  ( B  <P  y  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  B )  /\  s  e.  ( 1st `  y
) ) ) )
137, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  ( B  <P  y  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )
141, 13mpbid 147 . . . 4  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) )
15 simprrl 539 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
s  e.  ( 2nd `  B ) )
165suplocexprlem2b 7776 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
178, 16syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
1817eleq2d 2263 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 2nd `  B )  <-> 
s  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
1918ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
( s  e.  ( 2nd `  B )  <-> 
s  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
2015, 19mpbid 147 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
s  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
21 breq2 4034 . . . . . . . . 9  |-  ( u  =  s  ->  (
w  <Q  u  <->  w  <Q  s ) )
2221rexbidv 2495 . . . . . . . 8  |-  ( u  =  s  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  s )
)
2322elrab 2917 . . . . . . 7  |-  ( s  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( s  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  s )
)
2420, 23sylib 122 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
( s  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  s )
)
2524simprd 114 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  ->  E. w  e.  |^| ( 2nd " A ) w 
<Q  s )
26 simprrr 540 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
s  e.  ( 1st `  y ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  s  e.  ( 1st `  y ) )
28 simprr 531 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  w  <Q  s
)
2911ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  y  e.  P. )
30 prop 7537 . . . . . . . . . 10  |-  ( y  e.  P.  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  P. )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P. )
32 eleq2 2257 . . . . . . . . . 10  |-  ( t  =  ( 2nd `  y
)  ->  ( w  e.  t  <->  w  e.  ( 2nd `  y ) ) )
33 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  w  e.  |^| ( 2nd " A ) )
34 vex 2763 . . . . . . . . . . . 12  |-  w  e. 
_V
3534elint2 3878 . . . . . . . . . . 11  |-  ( w  e.  |^| ( 2nd " A
)  <->  A. t  e.  ( 2nd " A ) w  e.  t )
3633, 35sylib 122 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  A. t  e.  ( 2nd " A ) w  e.  t )
37 fo2nd 6213 . . . . . . . . . . . . 13  |-  2nd : _V -onto-> _V
38 fofun 5478 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
3937, 38ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
40 vex 2763 . . . . . . . . . . . . 13  |-  y  e. 
_V
41 fof 5477 . . . . . . . . . . . . . . 15  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
4237, 41ax-mp 5 . . . . . . . . . . . . . 14  |-  2nd : _V
--> _V
4342fdmi 5412 . . . . . . . . . . . . 13  |-  dom  2nd  =  _V
4440, 43eleqtrri 2269 . . . . . . . . . . . 12  |-  y  e. 
dom  2nd
45 funfvima 5791 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  y  e.  dom  2nd )  -> 
( y  e.  A  ->  ( 2nd `  y
)  e.  ( 2nd " A ) ) )
4639, 44, 45mp2an 426 . . . . . . . . . . 11  |-  ( y  e.  A  ->  ( 2nd `  y )  e.  ( 2nd " A
) )
4746ad4antlr 495 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  ( 2nd `  y
)  e.  ( 2nd " A ) )
4832, 36, 47rspcdva 2870 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  w  e.  ( 2nd `  y ) )
49 prcunqu 7547 . . . . . . . . 9  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  w  e.  ( 2nd `  y ) )  -> 
( w  <Q  s  ->  s  e.  ( 2nd `  y ) ) )
5031, 48, 49syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  ( w  <Q  s  ->  s  e.  ( 2nd `  y ) ) )
5128, 50mpd 13 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  s  e.  ( 2nd `  y ) )
5227, 51jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  ( s  e.  ( 1st `  y
)  /\  s  e.  ( 2nd `  y ) ) )
53 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  s  e.  Q. )
54 prdisj 7554 . . . . . . 7  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  s  e.  Q. )  ->  -.  ( s  e.  ( 1st `  y
)  /\  s  e.  ( 2nd `  y ) ) )
5531, 53, 54syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  -.  ( s  e.  ( 1st `  y
)  /\  s  e.  ( 2nd `  y ) ) )
5652, 55pm2.21fal 1384 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  -> F.  )
5725, 56rexlimddv 2616 . . . 4  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> F.  )
5814, 57rexlimddv 2616 . . 3  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  -> F.  )
5958inegd 1383 . 2  |-  ( (
ph  /\  y  e.  A )  ->  -.  B  <P  y )
6059ralrimiva 2567 1  |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   F. wfal 1369   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   _Vcvv 2760    C_ wss 3154   <.cop 3622   U.cuni 3836   |^|cint 3871   class class class wbr 4030   dom cdm 4660   "cima 4663   Fun wfun 5249   -->wf 5251   -onto->wfo 5253   ` cfv 5255   1stc1st 6193   2ndc2nd 6194   Q.cnq 7342    <Q cltq 7347   P.cnp 7353    <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocexpr  7787
  Copyright terms: Public domain W3C validator