Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemub | Unicode version |
Description: Lemma for suplocexpr 7687. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | |
suplocexpr.ub | |
suplocexpr.loc | |
suplocexpr.b |
Ref | Expression |
---|---|
suplocexprlemub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | suplocexpr.m | . . . . . . . 8 | |
3 | suplocexpr.ub | . . . . . . . 8 | |
4 | suplocexpr.loc | . . . . . . . 8 | |
5 | suplocexpr.b | . . . . . . . 8 | |
6 | 2, 3, 4, 5 | suplocexprlemex 7684 | . . . . . . 7 |
7 | 6 | ad2antrr 485 | . . . . . 6 |
8 | 2, 3, 4 | suplocexprlemss 7677 | . . . . . . . 8 |
9 | 8 | ad2antrr 485 | . . . . . . 7 |
10 | simplr 525 | . . . . . . 7 | |
11 | 9, 10 | sseldd 3148 | . . . . . 6 |
12 | ltdfpr 7468 | . . . . . 6 | |
13 | 7, 11, 12 | syl2anc 409 | . . . . 5 |
14 | 1, 13 | mpbid 146 | . . . 4 |
15 | simprrl 534 | . . . . . . . 8 | |
16 | 5 | suplocexprlem2b 7676 | . . . . . . . . . . 11 |
17 | 8, 16 | syl 14 | . . . . . . . . . 10 |
18 | 17 | eleq2d 2240 | . . . . . . . . 9 |
19 | 18 | ad3antrrr 489 | . . . . . . . 8 |
20 | 15, 19 | mpbid 146 | . . . . . . 7 |
21 | breq2 3993 | . . . . . . . . 9 | |
22 | 21 | rexbidv 2471 | . . . . . . . 8 |
23 | 22 | elrab 2886 | . . . . . . 7 |
24 | 20, 23 | sylib 121 | . . . . . 6 |
25 | 24 | simprd 113 | . . . . 5 |
26 | simprrr 535 | . . . . . . . 8 | |
27 | 26 | adantr 274 | . . . . . . 7 |
28 | simprr 527 | . . . . . . . 8 | |
29 | 11 | ad2antrr 485 | . . . . . . . . . 10 |
30 | prop 7437 | . . . . . . . . . 10 | |
31 | 29, 30 | syl 14 | . . . . . . . . 9 |
32 | eleq2 2234 | . . . . . . . . . 10 | |
33 | simprl 526 | . . . . . . . . . . 11 | |
34 | vex 2733 | . . . . . . . . . . . 12 | |
35 | 34 | elint2 3838 | . . . . . . . . . . 11 |
36 | 33, 35 | sylib 121 | . . . . . . . . . 10 |
37 | fo2nd 6137 | . . . . . . . . . . . . 13 | |
38 | fofun 5421 | . . . . . . . . . . . . 13 | |
39 | 37, 38 | ax-mp 5 | . . . . . . . . . . . 12 |
40 | vex 2733 | . . . . . . . . . . . . 13 | |
41 | fof 5420 | . . . . . . . . . . . . . . 15 | |
42 | 37, 41 | ax-mp 5 | . . . . . . . . . . . . . 14 |
43 | 42 | fdmi 5355 | . . . . . . . . . . . . 13 |
44 | 40, 43 | eleqtrri 2246 | . . . . . . . . . . . 12 |
45 | funfvima 5727 | . . . . . . . . . . . 12 | |
46 | 39, 44, 45 | mp2an 424 | . . . . . . . . . . 11 |
47 | 46 | ad4antlr 492 | . . . . . . . . . 10 |
48 | 32, 36, 47 | rspcdva 2839 | . . . . . . . . 9 |
49 | prcunqu 7447 | . . . . . . . . 9 | |
50 | 31, 48, 49 | syl2anc 409 | . . . . . . . 8 |
51 | 28, 50 | mpd 13 | . . . . . . 7 |
52 | 27, 51 | jca 304 | . . . . . 6 |
53 | simplrl 530 | . . . . . . 7 | |
54 | prdisj 7454 | . . . . . . 7 | |
55 | 31, 53, 54 | syl2anc 409 | . . . . . 6 |
56 | 52, 55 | pm2.21fal 1368 | . . . . 5 |
57 | 25, 56 | rexlimddv 2592 | . . . 4 |
58 | 14, 57 | rexlimddv 2592 | . . 3 |
59 | 58 | inegd 1367 | . 2 |
60 | 59 | ralrimiva 2543 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wfal 1353 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cop 3586 cuni 3796 cint 3831 class class class wbr 3989 cdm 4611 cima 4614 wfun 5192 wf 5194 wfo 5196 cfv 5198 c1st 6117 c2nd 6118 cnq 7242 cltq 7247 cnp 7253 cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: suplocexpr 7687 |
Copyright terms: Public domain | W3C validator |