| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemub | Unicode version | ||
| Description: Lemma for suplocexpr 7792. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| suplocexpr.m | 
 | 
| suplocexpr.ub | 
 | 
| suplocexpr.loc | 
 | 
| suplocexpr.b | 
 | 
| Ref | Expression | 
|---|---|
| suplocexprlemub | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . . 5
 | |
| 2 | suplocexpr.m | 
. . . . . . . 8
 | |
| 3 | suplocexpr.ub | 
. . . . . . . 8
 | |
| 4 | suplocexpr.loc | 
. . . . . . . 8
 | |
| 5 | suplocexpr.b | 
. . . . . . . 8
 | |
| 6 | 2, 3, 4, 5 | suplocexprlemex 7789 | 
. . . . . . 7
 | 
| 7 | 6 | ad2antrr 488 | 
. . . . . 6
 | 
| 8 | 2, 3, 4 | suplocexprlemss 7782 | 
. . . . . . . 8
 | 
| 9 | 8 | ad2antrr 488 | 
. . . . . . 7
 | 
| 10 | simplr 528 | 
. . . . . . 7
 | |
| 11 | 9, 10 | sseldd 3184 | 
. . . . . 6
 | 
| 12 | ltdfpr 7573 | 
. . . . . 6
 | |
| 13 | 7, 11, 12 | syl2anc 411 | 
. . . . 5
 | 
| 14 | 1, 13 | mpbid 147 | 
. . . 4
 | 
| 15 | simprrl 539 | 
. . . . . . . 8
 | |
| 16 | 5 | suplocexprlem2b 7781 | 
. . . . . . . . . . 11
 | 
| 17 | 8, 16 | syl 14 | 
. . . . . . . . . 10
 | 
| 18 | 17 | eleq2d 2266 | 
. . . . . . . . 9
 | 
| 19 | 18 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 20 | 15, 19 | mpbid 147 | 
. . . . . . 7
 | 
| 21 | breq2 4037 | 
. . . . . . . . 9
 | |
| 22 | 21 | rexbidv 2498 | 
. . . . . . . 8
 | 
| 23 | 22 | elrab 2920 | 
. . . . . . 7
 | 
| 24 | 20, 23 | sylib 122 | 
. . . . . 6
 | 
| 25 | 24 | simprd 114 | 
. . . . 5
 | 
| 26 | simprrr 540 | 
. . . . . . . 8
 | |
| 27 | 26 | adantr 276 | 
. . . . . . 7
 | 
| 28 | simprr 531 | 
. . . . . . . 8
 | |
| 29 | 11 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 30 | prop 7542 | 
. . . . . . . . . 10
 | |
| 31 | 29, 30 | syl 14 | 
. . . . . . . . 9
 | 
| 32 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 33 | simprl 529 | 
. . . . . . . . . . 11
 | |
| 34 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 35 | 34 | elint2 3881 | 
. . . . . . . . . . 11
 | 
| 36 | 33, 35 | sylib 122 | 
. . . . . . . . . 10
 | 
| 37 | fo2nd 6216 | 
. . . . . . . . . . . . 13
 | |
| 38 | fofun 5481 | 
. . . . . . . . . . . . 13
 | |
| 39 | 37, 38 | ax-mp 5 | 
. . . . . . . . . . . 12
 | 
| 40 | vex 2766 | 
. . . . . . . . . . . . 13
 | |
| 41 | fof 5480 | 
. . . . . . . . . . . . . . 15
 | |
| 42 | 37, 41 | ax-mp 5 | 
. . . . . . . . . . . . . 14
 | 
| 43 | 42 | fdmi 5415 | 
. . . . . . . . . . . . 13
 | 
| 44 | 40, 43 | eleqtrri 2272 | 
. . . . . . . . . . . 12
 | 
| 45 | funfvima 5794 | 
. . . . . . . . . . . 12
 | |
| 46 | 39, 44, 45 | mp2an 426 | 
. . . . . . . . . . 11
 | 
| 47 | 46 | ad4antlr 495 | 
. . . . . . . . . 10
 | 
| 48 | 32, 36, 47 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 49 | prcunqu 7552 | 
. . . . . . . . 9
 | |
| 50 | 31, 48, 49 | syl2anc 411 | 
. . . . . . . 8
 | 
| 51 | 28, 50 | mpd 13 | 
. . . . . . 7
 | 
| 52 | 27, 51 | jca 306 | 
. . . . . 6
 | 
| 53 | simplrl 535 | 
. . . . . . 7
 | |
| 54 | prdisj 7559 | 
. . . . . . 7
 | |
| 55 | 31, 53, 54 | syl2anc 411 | 
. . . . . 6
 | 
| 56 | 52, 55 | pm2.21fal 1384 | 
. . . . 5
 | 
| 57 | 25, 56 | rexlimddv 2619 | 
. . . 4
 | 
| 58 | 14, 57 | rexlimddv 2619 | 
. . 3
 | 
| 59 | 58 | inegd 1383 | 
. 2
 | 
| 60 | 59 | ralrimiva 2570 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-iltp 7537 | 
| This theorem is referenced by: suplocexpr 7792 | 
| Copyright terms: Public domain | W3C validator |