ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemub Unicode version

Theorem suplocexprlemub 7835
Description: Lemma for suplocexpr 7837. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemub  |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
Distinct variable groups:    u, A, w, y    x, A, z, u, y    w, B    ph, u, w, y    ph, x, z    z, w
Allowed substitution hints:    B( x, y, z, u)

Proof of Theorem suplocexprlemub
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  B  <P  y )
2 suplocexpr.m . . . . . . . 8  |-  ( ph  ->  E. x  x  e.  A )
3 suplocexpr.ub . . . . . . . 8  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
4 suplocexpr.loc . . . . . . . 8  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
5 suplocexpr.b . . . . . . . 8  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
62, 3, 4, 5suplocexprlemex 7834 . . . . . . 7  |-  ( ph  ->  B  e.  P. )
76ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  B  e.  P. )
82, 3, 4suplocexprlemss 7827 . . . . . . . 8  |-  ( ph  ->  A  C_  P. )
98ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  A  C_ 
P. )
10 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  y  e.  A )
119, 10sseldd 3193 . . . . . 6  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  y  e.  P. )
12 ltdfpr 7618 . . . . . 6  |-  ( ( B  e.  P.  /\  y  e.  P. )  ->  ( B  <P  y  <->  E. s  e.  Q.  (
s  e.  ( 2nd `  B )  /\  s  e.  ( 1st `  y
) ) ) )
137, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  ( B  <P  y  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )
141, 13mpbid 147 . . . 4  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) )
15 simprrl 539 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
s  e.  ( 2nd `  B ) )
165suplocexprlem2b 7826 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
178, 16syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
1817eleq2d 2274 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 2nd `  B )  <-> 
s  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
1918ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
( s  e.  ( 2nd `  B )  <-> 
s  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
2015, 19mpbid 147 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
s  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
21 breq2 4047 . . . . . . . . 9  |-  ( u  =  s  ->  (
w  <Q  u  <->  w  <Q  s ) )
2221rexbidv 2506 . . . . . . . 8  |-  ( u  =  s  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  s )
)
2322elrab 2928 . . . . . . 7  |-  ( s  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( s  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  s )
)
2420, 23sylib 122 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
( s  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  s )
)
2524simprd 114 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  ->  E. w  e.  |^| ( 2nd " A ) w 
<Q  s )
26 simprrr 540 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> 
s  e.  ( 1st `  y ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  s  e.  ( 1st `  y ) )
28 simprr 531 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  w  <Q  s
)
2911ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  y  e.  P. )
30 prop 7587 . . . . . . . . . 10  |-  ( y  e.  P.  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  P. )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P. )
32 eleq2 2268 . . . . . . . . . 10  |-  ( t  =  ( 2nd `  y
)  ->  ( w  e.  t  <->  w  e.  ( 2nd `  y ) ) )
33 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  w  e.  |^| ( 2nd " A ) )
34 vex 2774 . . . . . . . . . . . 12  |-  w  e. 
_V
3534elint2 3891 . . . . . . . . . . 11  |-  ( w  e.  |^| ( 2nd " A
)  <->  A. t  e.  ( 2nd " A ) w  e.  t )
3633, 35sylib 122 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  A. t  e.  ( 2nd " A ) w  e.  t )
37 fo2nd 6243 . . . . . . . . . . . . 13  |-  2nd : _V -onto-> _V
38 fofun 5498 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
3937, 38ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
40 vex 2774 . . . . . . . . . . . . 13  |-  y  e. 
_V
41 fof 5497 . . . . . . . . . . . . . . 15  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
4237, 41ax-mp 5 . . . . . . . . . . . . . 14  |-  2nd : _V
--> _V
4342fdmi 5432 . . . . . . . . . . . . 13  |-  dom  2nd  =  _V
4440, 43eleqtrri 2280 . . . . . . . . . . . 12  |-  y  e. 
dom  2nd
45 funfvima 5815 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  y  e.  dom  2nd )  -> 
( y  e.  A  ->  ( 2nd `  y
)  e.  ( 2nd " A ) ) )
4639, 44, 45mp2an 426 . . . . . . . . . . 11  |-  ( y  e.  A  ->  ( 2nd `  y )  e.  ( 2nd " A
) )
4746ad4antlr 495 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  ( 2nd `  y
)  e.  ( 2nd " A ) )
4832, 36, 47rspcdva 2881 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  w  e.  ( 2nd `  y ) )
49 prcunqu 7597 . . . . . . . . 9  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  w  e.  ( 2nd `  y ) )  -> 
( w  <Q  s  ->  s  e.  ( 2nd `  y ) ) )
5031, 48, 49syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  ( w  <Q  s  ->  s  e.  ( 2nd `  y ) ) )
5128, 50mpd 13 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  s  e.  ( 2nd `  y ) )
5227, 51jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  ( s  e.  ( 1st `  y
)  /\  s  e.  ( 2nd `  y ) ) )
53 simplrl 535 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  s  e.  Q. )
54 prdisj 7604 . . . . . . 7  |-  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  P.  /\  s  e.  Q. )  ->  -.  ( s  e.  ( 1st `  y
)  /\  s  e.  ( 2nd `  y ) ) )
5531, 53, 54syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  ->  -.  ( s  e.  ( 1st `  y
)  /\  s  e.  ( 2nd `  y ) ) )
5652, 55pm2.21fal 1392 . . . . 5  |-  ( ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y
)  /\  ( s  e.  Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  /\  ( w  e.  |^| ( 2nd " A )  /\  w  <Q  s ) )  -> F.  )
5725, 56rexlimddv 2627 . . . 4  |-  ( ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  /\  ( s  e. 
Q.  /\  ( s  e.  ( 2nd `  B
)  /\  s  e.  ( 1st `  y ) ) ) )  -> F.  )
5814, 57rexlimddv 2627 . . 3  |-  ( ( ( ph  /\  y  e.  A )  /\  B  <P  y )  -> F.  )
5958inegd 1391 . 2  |-  ( (
ph  /\  y  e.  A )  ->  -.  B  <P  y )
6059ralrimiva 2578 1  |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1372   F. wfal 1377   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487   _Vcvv 2771    C_ wss 3165   <.cop 3635   U.cuni 3849   |^|cint 3884   class class class wbr 4043   dom cdm 4674   "cima 4677   Fun wfun 5264   -->wf 5266   -onto->wfo 5268   ` cfv 5270   1stc1st 6223   2ndc2nd 6224   Q.cnq 7392    <Q cltq 7397   P.cnp 7403    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iltp 7582
This theorem is referenced by:  suplocexpr  7837
  Copyright terms: Public domain W3C validator