ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbasss Unicode version

Theorem qtopbasss 13315
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
Hypotheses
Ref Expression
qtopbas.1  |-  S  C_  RR*
qtopbas.max  |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )
qtopbas.min  |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S
)
Assertion
Ref Expression
qtopbasss  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Distinct variable group:    x, y, S

Proof of Theorem qtopbasss
Dummy variables  u  t  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 9864 . . 3  |-  (,)  e.  _V
21imaex 4966 . 2  |-  ( (,) " ( S  X.  S ) )  e. 
_V
3 qtopbas.1 . . . . . . . . 9  |-  S  C_  RR*
43sseli 3143 . . . . . . . 8  |-  ( z  e.  S  ->  z  e.  RR* )
53sseli 3143 . . . . . . . 8  |-  ( w  e.  S  ->  w  e.  RR* )
64, 5anim12i 336 . . . . . . 7  |-  ( ( z  e.  S  /\  w  e.  S )  ->  ( z  e.  RR*  /\  w  e.  RR* )
)
73sseli 3143 . . . . . . . 8  |-  ( v  e.  S  ->  v  e.  RR* )
83sseli 3143 . . . . . . . 8  |-  ( u  e.  S  ->  u  e.  RR* )
97, 8anim12i 336 . . . . . . 7  |-  ( ( v  e.  S  /\  u  e.  S )  ->  ( v  e.  RR*  /\  u  e.  RR* )
)
10 iooinsup 11240 . . . . . . 7  |-  ( ( ( z  e.  RR*  /\  w  e.  RR* )  /\  ( v  e.  RR*  /\  u  e.  RR* )
)  ->  ( (
z (,) w )  i^i  ( v (,) u ) )  =  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) ) )
116, 9, 10syl2an 287 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  =  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) ) )
12 qtopbas.max . . . . . . . . . . 11  |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )
1312rgen2a 2524 . . . . . . . . . 10  |-  A. x  e.  S  A. y  e.  S  sup ( { x ,  y } ,  RR* ,  <  )  e.  S
14 preq12 3662 . . . . . . . . . . . . . 14  |-  ( ( x  =  v  /\  y  =  z )  ->  { x ,  y }  =  { v ,  z } )
15 prcom 3659 . . . . . . . . . . . . . 14  |-  { v ,  z }  =  { z ,  v }
1614, 15eqtrdi 2219 . . . . . . . . . . . . 13  |-  ( ( x  =  v  /\  y  =  z )  ->  { x ,  y }  =  { z ,  v } )
1716supeq1d 6964 . . . . . . . . . . . 12  |-  ( ( x  =  v  /\  y  =  z )  ->  sup ( { x ,  y } ,  RR* ,  <  )  =  sup ( { z ,  v } ,  RR* ,  <  ) )
1817eleq1d 2239 . . . . . . . . . . 11  |-  ( ( x  =  v  /\  y  =  z )  ->  ( sup ( { x ,  y } ,  RR* ,  <  )  e.  S  <->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S ) )
1918rspc2gv 2846 . . . . . . . . . 10  |-  ( ( v  e.  S  /\  z  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  sup ( { x ,  y } ,  RR* ,  <  )  e.  S  ->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S ) )
2013, 19mpi 15 . . . . . . . . 9  |-  ( ( v  e.  S  /\  z  e.  S )  ->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S )
2120ancoms 266 . . . . . . . 8  |-  ( ( z  e.  S  /\  v  e.  S )  ->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S )
22 qtopbas.min . . . . . . . . . 10  |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S
)
2322rgen2a 2524 . . . . . . . . 9  |-  A. x  e.  S  A. y  e.  S inf ( {
x ,  y } ,  RR* ,  <  )  e.  S
24 preq12 3662 . . . . . . . . . . . 12  |-  ( ( x  =  w  /\  y  =  u )  ->  { x ,  y }  =  { w ,  u } )
2524infeq1d 6989 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  u )  -> inf ( { x ,  y } ,  RR* ,  <  )  = inf ( { w ,  u } ,  RR* ,  <  ) )
2625eleq1d 2239 . . . . . . . . . 10  |-  ( ( x  =  w  /\  y  =  u )  ->  (inf ( { x ,  y } ,  RR* ,  <  )  e.  S  <-> inf ( { w ,  u } ,  RR* ,  <  )  e.  S
) )
2726rspc2gv 2846 . . . . . . . . 9  |-  ( ( w  e.  S  /\  u  e.  S )  ->  ( A. x  e.  S  A. y  e.  S inf ( { x ,  y } ,  RR* ,  <  )  e.  S  -> inf ( {
w ,  u } ,  RR* ,  <  )  e.  S ) )
2823, 27mpi 15 . . . . . . . 8  |-  ( ( w  e.  S  /\  u  e.  S )  -> inf ( { w ,  u } ,  RR* ,  <  )  e.  S
)
29 df-ov 5856 . . . . . . . . 9  |-  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  =  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >. )
30 opelxpi 4643 . . . . . . . . . 10  |-  ( ( sup ( { z ,  v } ,  RR* ,  <  )  e.  S  /\ inf ( {
w ,  u } ,  RR* ,  <  )  e.  S )  ->  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >.  e.  ( S  X.  S ) )
31 ioof 9928 . . . . . . . . . . . 12  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
32 ffun 5350 . . . . . . . . . . . 12  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
3331, 32ax-mp 5 . . . . . . . . . . 11  |-  Fun  (,)
34 xpss12 4718 . . . . . . . . . . . . 13  |-  ( ( S  C_  RR*  /\  S  C_ 
RR* )  ->  ( S  X.  S )  C_  ( RR*  X.  RR* )
)
353, 3, 34mp2an 424 . . . . . . . . . . . 12  |-  ( S  X.  S )  C_  ( RR*  X.  RR* )
3631fdmi 5355 . . . . . . . . . . . 12  |-  dom  (,)  =  ( RR*  X.  RR* )
3735, 36sseqtrri 3182 . . . . . . . . . . 11  |-  ( S  X.  S )  C_  dom  (,)
38 funfvima2 5728 . . . . . . . . . . 11  |-  ( ( Fun  (,)  /\  ( S  X.  S )  C_  dom  (,) )  ->  ( <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >.  e.  ( S  X.  S )  ->  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  )
>. )  e.  ( (,) " ( S  X.  S ) ) ) )
3933, 37, 38mp2an 424 . . . . . . . . . 10  |-  ( <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  )
>.  e.  ( S  X.  S )  ->  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >. )  e.  ( (,) " ( S  X.  S ) ) )
4030, 39syl 14 . . . . . . . . 9  |-  ( ( sup ( { z ,  v } ,  RR* ,  <  )  e.  S  /\ inf ( {
w ,  u } ,  RR* ,  <  )  e.  S )  ->  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >. )  e.  ( (,) " ( S  X.  S ) ) )
4129, 40eqeltrid 2257 . . . . . . . 8  |-  ( ( sup ( { z ,  v } ,  RR* ,  <  )  e.  S  /\ inf ( {
w ,  u } ,  RR* ,  <  )  e.  S )  ->  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  e.  ( (,) " ( S  X.  S ) ) )
4221, 28, 41syl2an 287 . . . . . . 7  |-  ( ( ( z  e.  S  /\  v  e.  S
)  /\  ( w  e.  S  /\  u  e.  S ) )  -> 
( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  e.  ( (,) " ( S  X.  S ) ) )
4342an4s 583 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  e.  ( (,) " ( S  X.  S ) ) )
4411, 43eqeltrd 2247 . . . . 5  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
4544ralrimivva 2552 . . . 4  |-  ( ( z  e.  S  /\  w  e.  S )  ->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
4645rgen2a 2524 . . 3  |-  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) )
47 ffn 5347 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4831, 47ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
49 ineq1 3321 . . . . . . . 8  |-  ( x  =  ( (,) `  t
)  ->  ( x  i^i  y )  =  ( ( (,) `  t
)  i^i  y )
)
5049eleq1d 2239 . . . . . . 7  |-  ( x  =  ( (,) `  t
)  ->  ( (
x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
5150ralbidv 2470 . . . . . 6  |-  ( x  =  ( (,) `  t
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
5251ralima 5735 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
5348, 35, 52mp2an 424 . . . 4  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) )
54 fveq2 5496 . . . . . . . . . 10  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( (,) `  <. z ,  w >. ) )
55 df-ov 5856 . . . . . . . . . 10  |-  ( z (,) w )  =  ( (,) `  <. z ,  w >. )
5654, 55eqtr4di 2221 . . . . . . . . 9  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( z (,) w ) )
5756ineq1d 3327 . . . . . . . 8  |-  ( t  =  <. z ,  w >.  ->  ( ( (,) `  t )  i^i  y
)  =  ( ( z (,) w )  i^i  y ) )
5857eleq1d 2239 . . . . . . 7  |-  ( t  =  <. z ,  w >.  ->  ( ( ( (,) `  t )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) ) )
5958ralbidv 2470 . . . . . 6  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
60 ineq2 3322 . . . . . . . . . 10  |-  ( y  =  ( (,) `  t
)  ->  ( (
z (,) w )  i^i  y )  =  ( ( z (,) w )  i^i  ( (,) `  t ) ) )
6160eleq1d 2239 . . . . . . . . 9  |-  ( y  =  ( (,) `  t
)  ->  ( (
( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6261ralima 5735 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6348, 35, 62mp2an 424 . . . . . . 7  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) )
64 fveq2 5496 . . . . . . . . . . 11  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( (,) `  <. v ,  u >. ) )
65 df-ov 5856 . . . . . . . . . . 11  |-  ( v (,) u )  =  ( (,) `  <. v ,  u >. )
6664, 65eqtr4di 2221 . . . . . . . . . 10  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( v (,) u ) )
6766ineq2d 3328 . . . . . . . . 9  |-  ( t  =  <. v ,  u >.  ->  ( ( z (,) w )  i^i  ( (,) `  t
) )  =  ( ( z (,) w
)  i^i  ( v (,) u ) ) )
6867eleq1d 2239 . . . . . . . 8  |-  ( t  =  <. v ,  u >.  ->  ( ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6968ralxp 4754 . . . . . . 7  |-  ( A. t  e.  ( S  X.  S ) ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7063, 69bitri 183 . . . . . 6  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7159, 70bitrdi 195 . . . . 5  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
7271ralxp 4754 . . . 4  |-  ( A. t  e.  ( S  X.  S ) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7353, 72bitri 183 . . 3  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7446, 73mpbir 145 . 2  |-  A. x  e.  ( (,) " ( S  X.  S ) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )
75 fiinbas 12841 . 2  |-  ( ( ( (,) " ( S  X.  S ) )  e.  _V  /\  A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) )  ->  ( (,) " ( S  X.  S ) )  e.  TopBases )
762, 74, 75mp2an 424 1  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    i^i cin 3120    C_ wss 3121   ~Pcpw 3566   {cpr 3584   <.cop 3586    X. cxp 4609   dom cdm 4611   "cima 4614   Fun wfun 5192    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853   supcsup 6959  infcinf 6960   RRcr 7773   RR*cxr 7953    < clt 7954   (,)cioo 9845   TopBasesctb 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-xneg 9729  df-ioo 9849  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-bases 12835
This theorem is referenced by:  qtopbas  13316  retopbas  13317
  Copyright terms: Public domain W3C validator