| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qtopbasss | Unicode version | ||
| Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.) | 
| Ref | Expression | 
|---|---|
| qtopbas.1 | 
 | 
| qtopbas.max | 
 | 
| qtopbas.min | 
 | 
| Ref | Expression | 
|---|---|
| qtopbasss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iooex 9982 | 
. . 3
 | |
| 2 | 1 | imaex 5024 | 
. 2
 | 
| 3 | qtopbas.1 | 
. . . . . . . . 9
 | |
| 4 | 3 | sseli 3179 | 
. . . . . . . 8
 | 
| 5 | 3 | sseli 3179 | 
. . . . . . . 8
 | 
| 6 | 4, 5 | anim12i 338 | 
. . . . . . 7
 | 
| 7 | 3 | sseli 3179 | 
. . . . . . . 8
 | 
| 8 | 3 | sseli 3179 | 
. . . . . . . 8
 | 
| 9 | 7, 8 | anim12i 338 | 
. . . . . . 7
 | 
| 10 | iooinsup 11442 | 
. . . . . . 7
 | |
| 11 | 6, 9, 10 | syl2an 289 | 
. . . . . 6
 | 
| 12 | qtopbas.max | 
. . . . . . . . . . 11
 | |
| 13 | 12 | rgen2a 2551 | 
. . . . . . . . . 10
 | 
| 14 | preq12 3701 | 
. . . . . . . . . . . . . 14
 | |
| 15 | prcom 3698 | 
. . . . . . . . . . . . . 14
 | |
| 16 | 14, 15 | eqtrdi 2245 | 
. . . . . . . . . . . . 13
 | 
| 17 | 16 | supeq1d 7053 | 
. . . . . . . . . . . 12
 | 
| 18 | 17 | eleq1d 2265 | 
. . . . . . . . . . 11
 | 
| 19 | 18 | rspc2gv 2880 | 
. . . . . . . . . 10
 | 
| 20 | 13, 19 | mpi 15 | 
. . . . . . . . 9
 | 
| 21 | 20 | ancoms 268 | 
. . . . . . . 8
 | 
| 22 | qtopbas.min | 
. . . . . . . . . 10
 | |
| 23 | 22 | rgen2a 2551 | 
. . . . . . . . 9
 | 
| 24 | preq12 3701 | 
. . . . . . . . . . . 12
 | |
| 25 | 24 | infeq1d 7078 | 
. . . . . . . . . . 11
 | 
| 26 | 25 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 27 | 26 | rspc2gv 2880 | 
. . . . . . . . 9
 | 
| 28 | 23, 27 | mpi 15 | 
. . . . . . . 8
 | 
| 29 | df-ov 5925 | 
. . . . . . . . 9
 | |
| 30 | opelxpi 4695 | 
. . . . . . . . . 10
 | |
| 31 | ioof 10046 | 
. . . . . . . . . . . 12
 | |
| 32 | ffun 5410 | 
. . . . . . . . . . . 12
 | |
| 33 | 31, 32 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 34 | xpss12 4770 | 
. . . . . . . . . . . . 13
 | |
| 35 | 3, 3, 34 | mp2an 426 | 
. . . . . . . . . . . 12
 | 
| 36 | 31 | fdmi 5415 | 
. . . . . . . . . . . 12
 | 
| 37 | 35, 36 | sseqtrri 3218 | 
. . . . . . . . . . 11
 | 
| 38 | funfvima2 5795 | 
. . . . . . . . . . 11
 | |
| 39 | 33, 37, 38 | mp2an 426 | 
. . . . . . . . . 10
 | 
| 40 | 30, 39 | syl 14 | 
. . . . . . . . 9
 | 
| 41 | 29, 40 | eqeltrid 2283 | 
. . . . . . . 8
 | 
| 42 | 21, 28, 41 | syl2an 289 | 
. . . . . . 7
 | 
| 43 | 42 | an4s 588 | 
. . . . . 6
 | 
| 44 | 11, 43 | eqeltrd 2273 | 
. . . . 5
 | 
| 45 | 44 | ralrimivva 2579 | 
. . . 4
 | 
| 46 | 45 | rgen2a 2551 | 
. . 3
 | 
| 47 | ffn 5407 | 
. . . . . 6
 | |
| 48 | 31, 47 | ax-mp 5 | 
. . . . 5
 | 
| 49 | ineq1 3357 | 
. . . . . . . 8
 | |
| 50 | 49 | eleq1d 2265 | 
. . . . . . 7
 | 
| 51 | 50 | ralbidv 2497 | 
. . . . . 6
 | 
| 52 | 51 | ralima 5802 | 
. . . . 5
 | 
| 53 | 48, 35, 52 | mp2an 426 | 
. . . 4
 | 
| 54 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 55 | df-ov 5925 | 
. . . . . . . . . 10
 | |
| 56 | 54, 55 | eqtr4di 2247 | 
. . . . . . . . 9
 | 
| 57 | 56 | ineq1d 3363 | 
. . . . . . . 8
 | 
| 58 | 57 | eleq1d 2265 | 
. . . . . . 7
 | 
| 59 | 58 | ralbidv 2497 | 
. . . . . 6
 | 
| 60 | ineq2 3358 | 
. . . . . . . . . 10
 | |
| 61 | 60 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 62 | 61 | ralima 5802 | 
. . . . . . . 8
 | 
| 63 | 48, 35, 62 | mp2an 426 | 
. . . . . . 7
 | 
| 64 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 65 | df-ov 5925 | 
. . . . . . . . . . 11
 | |
| 66 | 64, 65 | eqtr4di 2247 | 
. . . . . . . . . 10
 | 
| 67 | 66 | ineq2d 3364 | 
. . . . . . . . 9
 | 
| 68 | 67 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 69 | 68 | ralxp 4809 | 
. . . . . . 7
 | 
| 70 | 63, 69 | bitri 184 | 
. . . . . 6
 | 
| 71 | 59, 70 | bitrdi 196 | 
. . . . 5
 | 
| 72 | 71 | ralxp 4809 | 
. . . 4
 | 
| 73 | 53, 72 | bitri 184 | 
. . 3
 | 
| 74 | 46, 73 | mpbir 146 | 
. 2
 | 
| 75 | fiinbas 14285 | 
. 2
 | |
| 76 | 2, 74, 75 | mp2an 426 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-xneg 9847 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-bases 14279 | 
| This theorem is referenced by: qtopbas 14758 retopbas 14759 | 
| Copyright terms: Public domain | W3C validator |