ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbasss Unicode version

Theorem qtopbasss 12690
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
Hypotheses
Ref Expression
qtopbas.1  |-  S  C_  RR*
qtopbas.max  |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )
qtopbas.min  |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S
)
Assertion
Ref Expression
qtopbasss  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Distinct variable group:    x, y, S

Proof of Theorem qtopbasss
Dummy variables  u  t  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 9690 . . 3  |-  (,)  e.  _V
21imaex 4894 . 2  |-  ( (,) " ( S  X.  S ) )  e. 
_V
3 qtopbas.1 . . . . . . . . 9  |-  S  C_  RR*
43sseli 3093 . . . . . . . 8  |-  ( z  e.  S  ->  z  e.  RR* )
53sseli 3093 . . . . . . . 8  |-  ( w  e.  S  ->  w  e.  RR* )
64, 5anim12i 336 . . . . . . 7  |-  ( ( z  e.  S  /\  w  e.  S )  ->  ( z  e.  RR*  /\  w  e.  RR* )
)
73sseli 3093 . . . . . . . 8  |-  ( v  e.  S  ->  v  e.  RR* )
83sseli 3093 . . . . . . . 8  |-  ( u  e.  S  ->  u  e.  RR* )
97, 8anim12i 336 . . . . . . 7  |-  ( ( v  e.  S  /\  u  e.  S )  ->  ( v  e.  RR*  /\  u  e.  RR* )
)
10 iooinsup 11046 . . . . . . 7  |-  ( ( ( z  e.  RR*  /\  w  e.  RR* )  /\  ( v  e.  RR*  /\  u  e.  RR* )
)  ->  ( (
z (,) w )  i^i  ( v (,) u ) )  =  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) ) )
116, 9, 10syl2an 287 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  =  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) ) )
12 qtopbas.max . . . . . . . . . . 11  |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )
1312rgen2a 2486 . . . . . . . . . 10  |-  A. x  e.  S  A. y  e.  S  sup ( { x ,  y } ,  RR* ,  <  )  e.  S
14 preq12 3602 . . . . . . . . . . . . . 14  |-  ( ( x  =  v  /\  y  =  z )  ->  { x ,  y }  =  { v ,  z } )
15 prcom 3599 . . . . . . . . . . . . . 14  |-  { v ,  z }  =  { z ,  v }
1614, 15syl6eq 2188 . . . . . . . . . . . . 13  |-  ( ( x  =  v  /\  y  =  z )  ->  { x ,  y }  =  { z ,  v } )
1716supeq1d 6874 . . . . . . . . . . . 12  |-  ( ( x  =  v  /\  y  =  z )  ->  sup ( { x ,  y } ,  RR* ,  <  )  =  sup ( { z ,  v } ,  RR* ,  <  ) )
1817eleq1d 2208 . . . . . . . . . . 11  |-  ( ( x  =  v  /\  y  =  z )  ->  ( sup ( { x ,  y } ,  RR* ,  <  )  e.  S  <->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S ) )
1918rspc2gv 2801 . . . . . . . . . 10  |-  ( ( v  e.  S  /\  z  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  sup ( { x ,  y } ,  RR* ,  <  )  e.  S  ->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S ) )
2013, 19mpi 15 . . . . . . . . 9  |-  ( ( v  e.  S  /\  z  e.  S )  ->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S )
2120ancoms 266 . . . . . . . 8  |-  ( ( z  e.  S  /\  v  e.  S )  ->  sup ( { z ,  v } ,  RR* ,  <  )  e.  S )
22 qtopbas.min . . . . . . . . . 10  |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S
)
2322rgen2a 2486 . . . . . . . . 9  |-  A. x  e.  S  A. y  e.  S inf ( {
x ,  y } ,  RR* ,  <  )  e.  S
24 preq12 3602 . . . . . . . . . . . 12  |-  ( ( x  =  w  /\  y  =  u )  ->  { x ,  y }  =  { w ,  u } )
2524infeq1d 6899 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  u )  -> inf ( { x ,  y } ,  RR* ,  <  )  = inf ( { w ,  u } ,  RR* ,  <  ) )
2625eleq1d 2208 . . . . . . . . . 10  |-  ( ( x  =  w  /\  y  =  u )  ->  (inf ( { x ,  y } ,  RR* ,  <  )  e.  S  <-> inf ( { w ,  u } ,  RR* ,  <  )  e.  S
) )
2726rspc2gv 2801 . . . . . . . . 9  |-  ( ( w  e.  S  /\  u  e.  S )  ->  ( A. x  e.  S  A. y  e.  S inf ( { x ,  y } ,  RR* ,  <  )  e.  S  -> inf ( {
w ,  u } ,  RR* ,  <  )  e.  S ) )
2823, 27mpi 15 . . . . . . . 8  |-  ( ( w  e.  S  /\  u  e.  S )  -> inf ( { w ,  u } ,  RR* ,  <  )  e.  S
)
29 df-ov 5777 . . . . . . . . 9  |-  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  =  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >. )
30 opelxpi 4571 . . . . . . . . . 10  |-  ( ( sup ( { z ,  v } ,  RR* ,  <  )  e.  S  /\ inf ( {
w ,  u } ,  RR* ,  <  )  e.  S )  ->  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >.  e.  ( S  X.  S ) )
31 ioof 9754 . . . . . . . . . . . 12  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
32 ffun 5275 . . . . . . . . . . . 12  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
3331, 32ax-mp 5 . . . . . . . . . . 11  |-  Fun  (,)
34 xpss12 4646 . . . . . . . . . . . . 13  |-  ( ( S  C_  RR*  /\  S  C_ 
RR* )  ->  ( S  X.  S )  C_  ( RR*  X.  RR* )
)
353, 3, 34mp2an 422 . . . . . . . . . . . 12  |-  ( S  X.  S )  C_  ( RR*  X.  RR* )
3631fdmi 5280 . . . . . . . . . . . 12  |-  dom  (,)  =  ( RR*  X.  RR* )
3735, 36sseqtrri 3132 . . . . . . . . . . 11  |-  ( S  X.  S )  C_  dom  (,)
38 funfvima2 5650 . . . . . . . . . . 11  |-  ( ( Fun  (,)  /\  ( S  X.  S )  C_  dom  (,) )  ->  ( <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >.  e.  ( S  X.  S )  ->  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  )
>. )  e.  ( (,) " ( S  X.  S ) ) ) )
3933, 37, 38mp2an 422 . . . . . . . . . 10  |-  ( <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  )
>.  e.  ( S  X.  S )  ->  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >. )  e.  ( (,) " ( S  X.  S ) ) )
4030, 39syl 14 . . . . . . . . 9  |-  ( ( sup ( { z ,  v } ,  RR* ,  <  )  e.  S  /\ inf ( {
w ,  u } ,  RR* ,  <  )  e.  S )  ->  ( (,) `  <. sup ( { z ,  v } ,  RR* ,  <  ) , inf ( { w ,  u } ,  RR* ,  <  ) >. )  e.  ( (,) " ( S  X.  S ) ) )
4129, 40eqeltrid 2226 . . . . . . . 8  |-  ( ( sup ( { z ,  v } ,  RR* ,  <  )  e.  S  /\ inf ( {
w ,  u } ,  RR* ,  <  )  e.  S )  ->  ( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  e.  ( (,) " ( S  X.  S ) ) )
4221, 28, 41syl2an 287 . . . . . . 7  |-  ( ( ( z  e.  S  /\  v  e.  S
)  /\  ( w  e.  S  /\  u  e.  S ) )  -> 
( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  e.  ( (,) " ( S  X.  S ) ) )
4342an4s 577 . . . . . 6  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( sup ( { z ,  v } ,  RR* ,  <  ) (,)inf ( { w ,  u } ,  RR* ,  <  ) )  e.  ( (,) " ( S  X.  S ) ) )
4411, 43eqeltrd 2216 . . . . 5  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( v  e.  S  /\  u  e.  S ) )  -> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
4544ralrimivva 2514 . . . 4  |-  ( ( z  e.  S  /\  w  e.  S )  ->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
4645rgen2a 2486 . . 3  |-  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) )
47 ffn 5272 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4831, 47ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
49 ineq1 3270 . . . . . . . 8  |-  ( x  =  ( (,) `  t
)  ->  ( x  i^i  y )  =  ( ( (,) `  t
)  i^i  y )
)
5049eleq1d 2208 . . . . . . 7  |-  ( x  =  ( (,) `  t
)  ->  ( (
x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
5150ralbidv 2437 . . . . . 6  |-  ( x  =  ( (,) `  t
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( x  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
5251ralima 5657 . . . . 5  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
5348, 35, 52mp2an 422 . . . 4  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S
) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) )
54 fveq2 5421 . . . . . . . . . 10  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( (,) `  <. z ,  w >. ) )
55 df-ov 5777 . . . . . . . . . 10  |-  ( z (,) w )  =  ( (,) `  <. z ,  w >. )
5654, 55syl6eqr 2190 . . . . . . . . 9  |-  ( t  =  <. z ,  w >.  ->  ( (,) `  t
)  =  ( z (,) w ) )
5756ineq1d 3276 . . . . . . . 8  |-  ( t  =  <. z ,  w >.  ->  ( ( (,) `  t )  i^i  y
)  =  ( ( z (,) w )  i^i  y ) )
5857eleq1d 2208 . . . . . . 7  |-  ( t  =  <. z ,  w >.  ->  ( ( ( (,) `  t )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) ) )
5958ralbidv 2437 . . . . . 6  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. y  e.  ( (,) " ( S  X.  S ) ) ( ( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) ) ) )
60 ineq2 3271 . . . . . . . . . 10  |-  ( y  =  ( (,) `  t
)  ->  ( (
z (,) w )  i^i  y )  =  ( ( z (,) w )  i^i  ( (,) `  t ) ) )
6160eleq1d 2208 . . . . . . . . 9  |-  ( y  =  ( (,) `  t
)  ->  ( (
( z (,) w
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6261ralima 5657 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( S  X.  S )  C_  ( RR*  X.  RR* )
)  ->  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6348, 35, 62mp2an 422 . . . . . . 7  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. t  e.  ( S  X.  S ) ( ( z (,) w
)  i^i  ( (,) `  t ) )  e.  ( (,) " ( S  X.  S ) ) )
64 fveq2 5421 . . . . . . . . . . 11  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( (,) `  <. v ,  u >. ) )
65 df-ov 5777 . . . . . . . . . . 11  |-  ( v (,) u )  =  ( (,) `  <. v ,  u >. )
6664, 65syl6eqr 2190 . . . . . . . . . 10  |-  ( t  =  <. v ,  u >.  ->  ( (,) `  t
)  =  ( v (,) u ) )
6766ineq2d 3277 . . . . . . . . 9  |-  ( t  =  <. v ,  u >.  ->  ( ( z (,) w )  i^i  ( (,) `  t
) )  =  ( ( z (,) w
)  i^i  ( v (,) u ) ) )
6867eleq1d 2208 . . . . . . . 8  |-  ( t  =  <. v ,  u >.  ->  ( ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <-> 
( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
6968ralxp 4682 . . . . . . 7  |-  ( A. t  e.  ( S  X.  S ) ( ( z (,) w )  i^i  ( (,) `  t
) )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7063, 69bitri 183 . . . . . 6  |-  ( A. y  e.  ( (,) " ( S  X.  S
) ) ( ( z (,) w )  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7159, 70syl6bb 195 . . . . 5  |-  ( t  =  <. z ,  w >.  ->  ( A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) ) )
7271ralxp 4682 . . . 4  |-  ( A. t  e.  ( S  X.  S ) A. y  e.  ( (,) " ( S  X.  S ) ) ( ( (,) `  t
)  i^i  y )  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( ( z (,) w )  i^i  (
v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7353, 72bitri 183 . . 3  |-  ( A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )  <->  A. z  e.  S  A. w  e.  S  A. v  e.  S  A. u  e.  S  ( (
z (,) w )  i^i  ( v (,) u ) )  e.  ( (,) " ( S  X.  S ) ) )
7446, 73mpbir 145 . 2  |-  A. x  e.  ( (,) " ( S  X.  S ) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) )
75 fiinbas 12216 . 2  |-  ( ( ( (,) " ( S  X.  S ) )  e.  _V  /\  A. x  e.  ( (,) " ( S  X.  S
) ) A. y  e.  ( (,) " ( S  X.  S ) ) ( x  i^i  y
)  e.  ( (,) " ( S  X.  S ) ) )  ->  ( (,) " ( S  X.  S ) )  e.  TopBases )
762, 74, 75mp2an 422 1  |-  ( (,) " ( S  X.  S ) )  e.  TopBases
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    i^i cin 3070    C_ wss 3071   ~Pcpw 3510   {cpr 3528   <.cop 3530    X. cxp 4537   dom cdm 4539   "cima 4542   Fun wfun 5117    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774   supcsup 6869  infcinf 6870   RRcr 7619   RR*cxr 7799    < clt 7800   (,)cioo 9671   TopBasesctb 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-xneg 9559  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-bases 12210
This theorem is referenced by:  qtopbas  12691  retopbas  12692
  Copyright terms: Public domain W3C validator