| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qtopbasss | Unicode version | ||
| Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.) |
| Ref | Expression |
|---|---|
| qtopbas.1 |
|
| qtopbas.max |
|
| qtopbas.min |
|
| Ref | Expression |
|---|---|
| qtopbasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooex 10031 |
. . 3
| |
| 2 | 1 | imaex 5038 |
. 2
|
| 3 | qtopbas.1 |
. . . . . . . . 9
| |
| 4 | 3 | sseli 3189 |
. . . . . . . 8
|
| 5 | 3 | sseli 3189 |
. . . . . . . 8
|
| 6 | 4, 5 | anim12i 338 |
. . . . . . 7
|
| 7 | 3 | sseli 3189 |
. . . . . . . 8
|
| 8 | 3 | sseli 3189 |
. . . . . . . 8
|
| 9 | 7, 8 | anim12i 338 |
. . . . . . 7
|
| 10 | iooinsup 11621 |
. . . . . . 7
| |
| 11 | 6, 9, 10 | syl2an 289 |
. . . . . 6
|
| 12 | qtopbas.max |
. . . . . . . . . . 11
| |
| 13 | 12 | rgen2a 2560 |
. . . . . . . . . 10
|
| 14 | preq12 3712 |
. . . . . . . . . . . . . 14
| |
| 15 | prcom 3709 |
. . . . . . . . . . . . . 14
| |
| 16 | 14, 15 | eqtrdi 2254 |
. . . . . . . . . . . . 13
|
| 17 | 16 | supeq1d 7091 |
. . . . . . . . . . . 12
|
| 18 | 17 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 19 | 18 | rspc2gv 2889 |
. . . . . . . . . 10
|
| 20 | 13, 19 | mpi 15 |
. . . . . . . . 9
|
| 21 | 20 | ancoms 268 |
. . . . . . . 8
|
| 22 | qtopbas.min |
. . . . . . . . . 10
| |
| 23 | 22 | rgen2a 2560 |
. . . . . . . . 9
|
| 24 | preq12 3712 |
. . . . . . . . . . . 12
| |
| 25 | 24 | infeq1d 7116 |
. . . . . . . . . . 11
|
| 26 | 25 | eleq1d 2274 |
. . . . . . . . . 10
|
| 27 | 26 | rspc2gv 2889 |
. . . . . . . . 9
|
| 28 | 23, 27 | mpi 15 |
. . . . . . . 8
|
| 29 | df-ov 5949 |
. . . . . . . . 9
| |
| 30 | opelxpi 4708 |
. . . . . . . . . 10
| |
| 31 | ioof 10095 |
. . . . . . . . . . . 12
| |
| 32 | ffun 5430 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . 11
|
| 34 | xpss12 4783 |
. . . . . . . . . . . . 13
| |
| 35 | 3, 3, 34 | mp2an 426 |
. . . . . . . . . . . 12
|
| 36 | 31 | fdmi 5435 |
. . . . . . . . . . . 12
|
| 37 | 35, 36 | sseqtrri 3228 |
. . . . . . . . . . 11
|
| 38 | funfvima2 5819 |
. . . . . . . . . . 11
| |
| 39 | 33, 37, 38 | mp2an 426 |
. . . . . . . . . 10
|
| 40 | 30, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 29, 40 | eqeltrid 2292 |
. . . . . . . 8
|
| 42 | 21, 28, 41 | syl2an 289 |
. . . . . . 7
|
| 43 | 42 | an4s 588 |
. . . . . 6
|
| 44 | 11, 43 | eqeltrd 2282 |
. . . . 5
|
| 45 | 44 | ralrimivva 2588 |
. . . 4
|
| 46 | 45 | rgen2a 2560 |
. . 3
|
| 47 | ffn 5427 |
. . . . . 6
| |
| 48 | 31, 47 | ax-mp 5 |
. . . . 5
|
| 49 | ineq1 3367 |
. . . . . . . 8
| |
| 50 | 49 | eleq1d 2274 |
. . . . . . 7
|
| 51 | 50 | ralbidv 2506 |
. . . . . 6
|
| 52 | 51 | ralima 5826 |
. . . . 5
|
| 53 | 48, 35, 52 | mp2an 426 |
. . . 4
|
| 54 | fveq2 5578 |
. . . . . . . . . 10
| |
| 55 | df-ov 5949 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | eqtr4di 2256 |
. . . . . . . . 9
|
| 57 | 56 | ineq1d 3373 |
. . . . . . . 8
|
| 58 | 57 | eleq1d 2274 |
. . . . . . 7
|
| 59 | 58 | ralbidv 2506 |
. . . . . 6
|
| 60 | ineq2 3368 |
. . . . . . . . . 10
| |
| 61 | 60 | eleq1d 2274 |
. . . . . . . . 9
|
| 62 | 61 | ralima 5826 |
. . . . . . . 8
|
| 63 | 48, 35, 62 | mp2an 426 |
. . . . . . 7
|
| 64 | fveq2 5578 |
. . . . . . . . . . 11
| |
| 65 | df-ov 5949 |
. . . . . . . . . . 11
| |
| 66 | 64, 65 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 67 | 66 | ineq2d 3374 |
. . . . . . . . 9
|
| 68 | 67 | eleq1d 2274 |
. . . . . . . 8
|
| 69 | 68 | ralxp 4822 |
. . . . . . 7
|
| 70 | 63, 69 | bitri 184 |
. . . . . 6
|
| 71 | 59, 70 | bitrdi 196 |
. . . . 5
|
| 72 | 71 | ralxp 4822 |
. . . 4
|
| 73 | 53, 72 | bitri 184 |
. . 3
|
| 74 | 46, 73 | mpbir 146 |
. 2
|
| 75 | fiinbas 14554 |
. 2
| |
| 76 | 2, 74, 75 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-rp 9778 df-xneg 9896 df-ioo 10016 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-bases 14548 |
| This theorem is referenced by: qtopbas 15027 retopbas 15028 |
| Copyright terms: Public domain | W3C validator |