| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qtopbasss | Unicode version | ||
| Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.) |
| Ref | Expression |
|---|---|
| qtopbas.1 |
|
| qtopbas.max |
|
| qtopbas.min |
|
| Ref | Expression |
|---|---|
| qtopbasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooex 9999 |
. . 3
| |
| 2 | 1 | imaex 5025 |
. 2
|
| 3 | qtopbas.1 |
. . . . . . . . 9
| |
| 4 | 3 | sseli 3180 |
. . . . . . . 8
|
| 5 | 3 | sseli 3180 |
. . . . . . . 8
|
| 6 | 4, 5 | anim12i 338 |
. . . . . . 7
|
| 7 | 3 | sseli 3180 |
. . . . . . . 8
|
| 8 | 3 | sseli 3180 |
. . . . . . . 8
|
| 9 | 7, 8 | anim12i 338 |
. . . . . . 7
|
| 10 | iooinsup 11459 |
. . . . . . 7
| |
| 11 | 6, 9, 10 | syl2an 289 |
. . . . . 6
|
| 12 | qtopbas.max |
. . . . . . . . . . 11
| |
| 13 | 12 | rgen2a 2551 |
. . . . . . . . . 10
|
| 14 | preq12 3702 |
. . . . . . . . . . . . . 14
| |
| 15 | prcom 3699 |
. . . . . . . . . . . . . 14
| |
| 16 | 14, 15 | eqtrdi 2245 |
. . . . . . . . . . . . 13
|
| 17 | 16 | supeq1d 7062 |
. . . . . . . . . . . 12
|
| 18 | 17 | eleq1d 2265 |
. . . . . . . . . . 11
|
| 19 | 18 | rspc2gv 2880 |
. . . . . . . . . 10
|
| 20 | 13, 19 | mpi 15 |
. . . . . . . . 9
|
| 21 | 20 | ancoms 268 |
. . . . . . . 8
|
| 22 | qtopbas.min |
. . . . . . . . . 10
| |
| 23 | 22 | rgen2a 2551 |
. . . . . . . . 9
|
| 24 | preq12 3702 |
. . . . . . . . . . . 12
| |
| 25 | 24 | infeq1d 7087 |
. . . . . . . . . . 11
|
| 26 | 25 | eleq1d 2265 |
. . . . . . . . . 10
|
| 27 | 26 | rspc2gv 2880 |
. . . . . . . . 9
|
| 28 | 23, 27 | mpi 15 |
. . . . . . . 8
|
| 29 | df-ov 5928 |
. . . . . . . . 9
| |
| 30 | opelxpi 4696 |
. . . . . . . . . 10
| |
| 31 | ioof 10063 |
. . . . . . . . . . . 12
| |
| 32 | ffun 5413 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . 11
|
| 34 | xpss12 4771 |
. . . . . . . . . . . . 13
| |
| 35 | 3, 3, 34 | mp2an 426 |
. . . . . . . . . . . 12
|
| 36 | 31 | fdmi 5418 |
. . . . . . . . . . . 12
|
| 37 | 35, 36 | sseqtrri 3219 |
. . . . . . . . . . 11
|
| 38 | funfvima2 5798 |
. . . . . . . . . . 11
| |
| 39 | 33, 37, 38 | mp2an 426 |
. . . . . . . . . 10
|
| 40 | 30, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 29, 40 | eqeltrid 2283 |
. . . . . . . 8
|
| 42 | 21, 28, 41 | syl2an 289 |
. . . . . . 7
|
| 43 | 42 | an4s 588 |
. . . . . 6
|
| 44 | 11, 43 | eqeltrd 2273 |
. . . . 5
|
| 45 | 44 | ralrimivva 2579 |
. . . 4
|
| 46 | 45 | rgen2a 2551 |
. . 3
|
| 47 | ffn 5410 |
. . . . . 6
| |
| 48 | 31, 47 | ax-mp 5 |
. . . . 5
|
| 49 | ineq1 3358 |
. . . . . . . 8
| |
| 50 | 49 | eleq1d 2265 |
. . . . . . 7
|
| 51 | 50 | ralbidv 2497 |
. . . . . 6
|
| 52 | 51 | ralima 5805 |
. . . . 5
|
| 53 | 48, 35, 52 | mp2an 426 |
. . . 4
|
| 54 | fveq2 5561 |
. . . . . . . . . 10
| |
| 55 | df-ov 5928 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | eqtr4di 2247 |
. . . . . . . . 9
|
| 57 | 56 | ineq1d 3364 |
. . . . . . . 8
|
| 58 | 57 | eleq1d 2265 |
. . . . . . 7
|
| 59 | 58 | ralbidv 2497 |
. . . . . 6
|
| 60 | ineq2 3359 |
. . . . . . . . . 10
| |
| 61 | 60 | eleq1d 2265 |
. . . . . . . . 9
|
| 62 | 61 | ralima 5805 |
. . . . . . . 8
|
| 63 | 48, 35, 62 | mp2an 426 |
. . . . . . 7
|
| 64 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 65 | df-ov 5928 |
. . . . . . . . . . 11
| |
| 66 | 64, 65 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 67 | 66 | ineq2d 3365 |
. . . . . . . . 9
|
| 68 | 67 | eleq1d 2265 |
. . . . . . . 8
|
| 69 | 68 | ralxp 4810 |
. . . . . . 7
|
| 70 | 63, 69 | bitri 184 |
. . . . . 6
|
| 71 | 59, 70 | bitrdi 196 |
. . . . 5
|
| 72 | 71 | ralxp 4810 |
. . . 4
|
| 73 | 53, 72 | bitri 184 |
. . 3
|
| 74 | 46, 73 | mpbir 146 |
. 2
|
| 75 | fiinbas 14369 |
. 2
| |
| 76 | 2, 74, 75 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-xneg 9864 df-ioo 9984 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-bases 14363 |
| This theorem is referenced by: qtopbas 14842 retopbas 14843 |
| Copyright terms: Public domain | W3C validator |