ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmi GIF version

Theorem fdmi 5355
Description: The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
Hypothesis
Ref Expression
fdmi.1 𝐹:𝐴𝐵
Assertion
Ref Expression
fdmi dom 𝐹 = 𝐴

Proof of Theorem fdmi
StepHypRef Expression
1 fdmi.1 . 2 𝐹:𝐴𝐵
2 fdm 5353 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
31, 2ax-mp 5 1 dom 𝐹 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  dom cdm 4611  wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fn 5201  df-f 5202
This theorem is referenced by:  suplocexprlemdisj  7682  suplocexprlemub  7685  eluzel2  9492  inftonninf  10397  qtopbasss  13315  retopbas  13317  tgqioo  13341  dvexp  13469  efcn  13483  pilem3  13498
  Copyright terms: Public domain W3C validator