| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmi | GIF version | ||
| Description: The domain of a mapping. (Contributed by NM, 28-Jul-2008.) |
| Ref | Expression |
|---|---|
| fdmi.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| fdmi | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmi.1 | . 2 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | fdm 5416 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 dom cdm 4664 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: suplocexprlemdisj 7804 suplocexprlemub 7807 eluzel2 9623 inftonninf 10551 qtopbasss 14841 retopbas 14843 tgqioo 14875 dvexp 15031 efcn 15088 pilem3 15103 |
| Copyright terms: Public domain | W3C validator |