ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmi GIF version

Theorem fdmi 5411
Description: The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
Hypothesis
Ref Expression
fdmi.1 𝐹:𝐴𝐵
Assertion
Ref Expression
fdmi dom 𝐹 = 𝐴

Proof of Theorem fdmi
StepHypRef Expression
1 fdmi.1 . 2 𝐹:𝐴𝐵
2 fdm 5409 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
31, 2ax-mp 5 1 dom 𝐹 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  dom cdm 4659  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5257  df-f 5258
This theorem is referenced by:  suplocexprlemdisj  7780  suplocexprlemub  7783  eluzel2  9597  inftonninf  10513  qtopbasss  14689  retopbas  14691  tgqioo  14715  dvexp  14860  efcn  14903  pilem3  14918
  Copyright terms: Public domain W3C validator