ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmd Unicode version

Theorem fdmd 5235
Description: Deduction form of fdm 5234. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fdmd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
fdmd  |-  ( ph  ->  dom  F  =  A )

Proof of Theorem fdmd
StepHypRef Expression
1 fdmd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fdm 5234 . 2  |-  ( F : A --> B  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( ph  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1312   dom cdm 4497   -->wf 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fn 5082  df-f 5083
This theorem is referenced by:  fssdmd  5242  fssdm  5243  ctssdccl  6946  ennnfonelemg  11755  ennnfonelemrnh  11768  ennnfonelemf1  11770  ctinfomlemom  11779  ctinf  11782  lmbrf  12220  cnntri  12229  cncnp  12235  lmtopcnp  12255  txcnp  12276  xmetdmdm  12339  metn0  12361  ellimc3apf  12579  limccnpcntop  12594  dvfvalap  12599
  Copyright terms: Public domain W3C validator