ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmd Unicode version

Theorem fdmd 5479
Description: Deduction form of fdm 5478. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fdmd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
fdmd  |-  ( ph  ->  dom  F  =  A )

Proof of Theorem fdmd
StepHypRef Expression
1 fdmd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fdm 5478 . 2  |-  ( F : A --> B  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( ph  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   dom cdm 4718   -->wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5320  df-f 5321
This theorem is referenced by:  fssdmd  5486  fssdm  5487  ctssdccl  7274  wrddm  11074  swrdclg  11177  cats1un  11248  s2dmg  11317  1arith  12885  ennnfonelemg  12969  ennnfonelemrnh  12982  ennnfonelemf1  12984  ctinfomlemom  12993  ctinf  12996  igsumval  13418  ghmrn  13789  psrbaglesuppg  14630  psrbagfi  14631  lmbrf  14883  cnntri  14892  cncnp  14898  lmtopcnp  14918  txcnp  14939  hmeores  14983  xmetdmdm  15024  metn0  15046  ellimc3apf  15328  limccnpcntop  15343  dvfvalap  15349  dvcjbr  15376  dvcj  15377  dvfre  15378  dvexp  15379  plyaddlem1  15415  plymullem1  15416  plycoeid3  15425  wrdupgren  15890  wrdumgren  15900
  Copyright terms: Public domain W3C validator