ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdmd Unicode version

Theorem fdmd 5354
Description: Deduction form of fdm 5353. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fdmd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
fdmd  |-  ( ph  ->  dom  F  =  A )

Proof of Theorem fdmd
StepHypRef Expression
1 fdmd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fdm 5353 . 2  |-  ( F : A --> B  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( ph  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   dom cdm 4611   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fn 5201  df-f 5202
This theorem is referenced by:  fssdmd  5361  fssdm  5362  ctssdccl  7088  1arith  12319  ennnfonelemg  12358  ennnfonelemrnh  12371  ennnfonelemf1  12373  ctinfomlemom  12382  ctinf  12385  lmbrf  13009  cnntri  13018  cncnp  13024  lmtopcnp  13044  txcnp  13065  hmeores  13109  xmetdmdm  13150  metn0  13172  ellimc3apf  13423  limccnpcntop  13438  dvfvalap  13444  dvcjbr  13466  dvcj  13467  dvfre  13468  dvexp  13469
  Copyright terms: Public domain W3C validator