Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fdm | Unicode version |
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . 2 | |
2 | fndm 5287 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cdm 4604 wfn 5183 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5191 df-f 5192 |
This theorem is referenced by: fdmd 5344 fdmi 5345 fssxp 5355 ffdm 5358 dmfex 5377 f00 5379 f0dom0 5381 f0rn0 5382 foima 5415 foco 5420 resdif 5454 fimacnv 5614 dff3im 5630 ffvresb 5648 resflem 5649 fmptco 5651 fornex 6083 issmo2 6257 smoiso 6270 tfrcllemubacc 6327 rdgon 6354 frecabcl 6367 frecsuclem 6374 mapprc 6618 elpm2r 6632 map0b 6653 mapsn 6656 brdomg 6714 fopwdom 6802 casef 7053 nn0supp 9166 frecuzrdgdomlem 10352 frecuzrdgsuctlem 10358 zfz1isolemiso 10752 ennnfonelemex 12347 intopsn 12598 iscnp3 12843 cnpnei 12859 cnntr 12865 cncnp 12870 cndis 12881 psmetdmdm 12964 xmetres 13022 metres 13023 metcnp 13152 dvcj 13313 nninfall 13889 |
Copyright terms: Public domain | W3C validator |