ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdm Unicode version

Theorem fdm 5409
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fdm  |-  ( F : A --> B  ->  dom  F  =  A )

Proof of Theorem fdm
StepHypRef Expression
1 ffn 5403 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 fndm 5353 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( F : A --> B  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   dom cdm 4659    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5257  df-f 5258
This theorem is referenced by:  fdmd  5410  fdmi  5411  fssxp  5421  ffdm  5424  dmfex  5443  f00  5445  f0dom0  5447  f0rn0  5448  foima  5481  fimadmfo  5485  foco  5487  resdif  5522  fimacnv  5687  dff3im  5703  ffvresb  5721  resflem  5722  fmptco  5724  focdmex  6167  issmo2  6342  smoiso  6355  tfrcllemubacc  6412  rdgon  6439  frecabcl  6452  frecsuclem  6459  mapprc  6706  elpm2r  6720  map0b  6741  mapsn  6744  brdomg  6802  pw2f1odclem  6890  fopwdom  6892  casef  7147  nn0supp  9292  frecuzrdgdomlem  10488  frecuzrdgsuctlem  10494  zfz1isolemiso  10910  ennnfonelemex  12571  intopsn  12950  iscnp3  14371  cnpnei  14387  cnntr  14393  cncnp  14398  cndis  14409  psmetdmdm  14492  xmetres  14550  metres  14551  metcnp  14680  dvcj  14858  nninfall  15499
  Copyright terms: Public domain W3C validator