| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | Unicode version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5445 |
. 2
| |
| 2 | fndm 5392 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5293 df-f 5294 |
| This theorem is referenced by: fdmd 5452 fdmi 5453 fssxp 5463 ffdm 5466 dmfex 5487 f00 5489 f0dom0 5491 f0rn0 5492 foima 5525 fimadmfo 5529 foco 5531 resdif 5566 fimacnv 5732 dff3im 5748 ffvresb 5766 resflem 5767 fmptco 5769 focdmex 6223 issmo2 6398 smoiso 6411 tfrcllemubacc 6468 rdgon 6495 frecabcl 6508 frecsuclem 6515 mapprc 6762 elpm2r 6776 map0b 6797 mapsn 6800 brdomg 6860 pw2f1odclem 6956 fopwdom 6958 casef 7216 nn0supp 9382 frecuzrdgdomlem 10599 frecuzrdgsuctlem 10605 zfz1isolemiso 11021 ennnfonelemex 12900 intopsn 13314 iscnp3 14790 cnpnei 14806 cnntr 14812 cncnp 14817 cndis 14828 psmetdmdm 14911 xmetres 14969 metres 14970 metcnp 15099 dvcj 15296 nninfall 16148 |
| Copyright terms: Public domain | W3C validator |