Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fdm | Unicode version |
Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5357 | . 2 | |
2 | fndm 5307 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 cdm 4620 wfn 5203 wf 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5211 df-f 5212 |
This theorem is referenced by: fdmd 5364 fdmi 5365 fssxp 5375 ffdm 5378 dmfex 5397 f00 5399 f0dom0 5401 f0rn0 5402 foima 5435 foco 5440 resdif 5475 fimacnv 5637 dff3im 5653 ffvresb 5671 resflem 5672 fmptco 5674 focdmex 6106 issmo2 6280 smoiso 6293 tfrcllemubacc 6350 rdgon 6377 frecabcl 6390 frecsuclem 6397 mapprc 6642 elpm2r 6656 map0b 6677 mapsn 6680 brdomg 6738 fopwdom 6826 casef 7077 nn0supp 9201 frecuzrdgdomlem 10387 frecuzrdgsuctlem 10393 zfz1isolemiso 10787 ennnfonelemex 12382 intopsn 12652 iscnp3 13274 cnpnei 13290 cnntr 13296 cncnp 13301 cndis 13312 psmetdmdm 13395 xmetres 13453 metres 13454 metcnp 13583 dvcj 13744 nninfall 14319 |
Copyright terms: Public domain | W3C validator |