| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdm | Unicode version | ||
| Description: The domain of a mapping. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 |
. 2
| |
| 2 | fndm 5420 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 df-f 5322 |
| This theorem is referenced by: fdmd 5480 fdmi 5481 fssxp 5491 ffdm 5494 dmfex 5515 f00 5517 f0dom0 5519 f0rn0 5520 foima 5553 fimadmfo 5557 foco 5559 resdif 5594 fimacnv 5764 dff3im 5780 ffvresb 5798 resflem 5799 fmptco 5801 focdmex 6260 issmo2 6435 smoiso 6448 tfrcllemubacc 6505 rdgon 6532 frecabcl 6545 frecsuclem 6552 mapprc 6799 elpm2r 6813 map0b 6834 mapsn 6837 brdomg 6897 pw2f1odclem 6995 fopwdom 6997 casef 7255 nn0supp 9421 frecuzrdgdomlem 10639 frecuzrdgsuctlem 10645 zfz1isolemiso 11061 ennnfonelemex 12985 intopsn 13400 iscnp3 14877 cnpnei 14893 cnntr 14899 cncnp 14904 cndis 14915 psmetdmdm 14998 xmetres 15056 metres 15057 metcnp 15186 dvcj 15383 wlkm 16051 nninfall 16375 |
| Copyright terms: Public domain | W3C validator |