| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9653 |
. . . 4
| |
| 2 | frel 5432 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | relelfvdm 5610 |
. . 3
| |
| 5 | 3, 4 | mpan 424 |
. 2
|
| 6 | 1 | fdmi 5435 |
. 2
|
| 7 | 5, 6 | eleqtrdi 2298 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 df-uz 9651 |
| This theorem is referenced by: eluz2 9656 uztrn 9667 uzneg 9669 uzss 9671 uz11 9673 eluzadd 9679 uzm1 9681 uzin 9683 uzind4 9711 elfz5 10141 elfzel1 10148 eluzfz1 10155 fzsplit2 10174 fzopth 10185 fzpred 10194 fzpreddisj 10195 fzdifsuc 10205 uzsplit 10216 uzdisj 10217 elfzp12 10223 fzm1 10224 uznfz 10227 nn0disj 10262 fzolb 10278 fzoss2 10298 fzouzdisj 10306 ige2m2fzo 10329 elfzonelfzo 10361 frec2uzrand 10552 frecfzen2 10574 seq3p1 10612 seqp1cd 10617 seq3clss 10618 seq3feq2 10623 seqfveqg 10625 seq3fveq 10626 seq3shft2 10628 seqshft2g 10629 ser3mono 10634 seq3split 10635 seqsplitg 10636 seq3caopr3 10638 seqcaopr3g 10639 seq3caopr2 10640 seq3f1olemp 10662 seq3f1oleml 10663 seq3f1o 10664 seqf1oglem2a 10665 seqf1oglem1 10666 seqf1oglem2 10667 seqf1og 10668 seq3id3 10671 seq3id 10672 seq3homo 10674 seq3z 10675 seqhomog 10677 seqfeq4g 10678 seq3distr 10679 ser3ge0 10683 ser3le 10684 leexp2a 10739 hashfz 10968 hashfzo 10969 hashfzp1 10971 seq3coll 10989 rexanuz2 11335 cau4 11460 clim2ser 11681 clim2ser2 11682 climserle 11689 fsum3cvg 11722 fsum3cvg2 11738 fsumsersdc 11739 fsum3ser 11741 fsumm1 11760 fsum1p 11762 telfsumo 11810 fsumparts 11814 cvgcmpub 11820 isumsplit 11835 cvgratnnlemmn 11869 clim2prod 11883 clim2divap 11884 prodfrecap 11890 prodfdivap 11891 ntrivcvgap 11892 fproddccvg 11916 fprodm1 11942 fprodabs 11960 fprodeq0 11961 uzwodc 12391 pcaddlem 12695 fngsum 13253 igsumvalx 13254 gsumfzval 13256 gsumval2 13262 gsumfzz 13360 gsumfzconst 13710 gsumfzfsumlemm 14382 inffz 16048 |
| Copyright terms: Public domain | W3C validator |