Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzel2 | Unicode version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9490 | . . . 4 | |
2 | frel 5352 | . . . 4 | |
3 | 1, 2 | ax-mp 5 | . . 3 |
4 | relelfvdm 5528 | . . 3 | |
5 | 3, 4 | mpan 422 | . 2 |
6 | 1 | fdmi 5355 | . 2 |
7 | 5, 6 | eleqtrdi 2263 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cpw 3566 cdm 4611 wrel 4616 wf 5194 cfv 5198 cz 9212 cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: eluz2 9493 uztrn 9503 uzneg 9505 uzss 9507 uz11 9509 eluzadd 9515 uzm1 9517 uzin 9519 uzind4 9547 elfz5 9973 elfzel1 9980 eluzfz1 9987 fzsplit2 10006 fzopth 10017 fzpred 10026 fzpreddisj 10027 fzdifsuc 10037 uzsplit 10048 uzdisj 10049 elfzp12 10055 fzm1 10056 uznfz 10059 nn0disj 10094 fzolb 10109 fzoss2 10128 fzouzdisj 10136 ige2m2fzo 10154 elfzonelfzo 10186 frec2uzrand 10361 frecfzen2 10383 seq3p1 10418 seqp1cd 10422 seq3clss 10423 seq3feq2 10426 seq3fveq 10427 seq3shft2 10429 ser3mono 10434 seq3split 10435 seq3caopr3 10437 seq3caopr2 10438 seq3f1olemp 10458 seq3f1oleml 10459 seq3f1o 10460 seq3id3 10463 seq3id 10464 seq3homo 10466 seq3z 10467 seq3distr 10469 ser3ge0 10473 ser3le 10474 leexp2a 10529 hashfz 10756 hashfzo 10757 hashfzp1 10759 seq3coll 10777 rexanuz2 10955 cau4 11080 clim2ser 11300 clim2ser2 11301 climserle 11308 fsum3cvg 11341 fsum3cvg2 11357 fsumsersdc 11358 fsum3ser 11360 fsumm1 11379 fsum1p 11381 telfsumo 11429 fsumparts 11433 cvgcmpub 11439 isumsplit 11454 cvgratnnlemmn 11488 clim2prod 11502 clim2divap 11503 prodfrecap 11509 prodfdivap 11510 ntrivcvgap 11511 fproddccvg 11535 fprodm1 11561 fprodabs 11579 fprodeq0 11580 uzwodc 11992 pcaddlem 12292 inffz 14101 |
Copyright terms: Public domain | W3C validator |