| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9725 |
. . . 4
| |
| 2 | frel 5478 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | relelfvdm 5659 |
. . 3
| |
| 5 | 3, 4 | mpan 424 |
. 2
|
| 6 | 1 | fdmi 5481 |
. 2
|
| 7 | 5, 6 | eleqtrdi 2322 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: eluz2 9728 uztrn 9739 uzneg 9741 uzss 9743 uz11 9745 eluzadd 9751 uzm1 9753 uzin 9755 uzind4 9783 elfz5 10213 elfzel1 10220 eluzfz1 10227 fzsplit2 10246 fzopth 10257 fzpred 10266 fzpreddisj 10267 fzdifsuc 10277 uzsplit 10288 uzdisj 10289 elfzp12 10295 fzm1 10296 uznfz 10299 nn0disj 10334 fzolb 10350 fzoss2 10370 fzouzdisj 10378 fzoun 10379 ige2m2fzo 10404 elfzonelfzo 10436 frec2uzrand 10627 frecfzen2 10649 seq3p1 10687 seqp1cd 10692 seq3clss 10693 seq3feq2 10698 seqfveqg 10700 seq3fveq 10701 seq3shft2 10703 seqshft2g 10704 ser3mono 10709 seq3split 10710 seqsplitg 10711 seq3caopr3 10713 seqcaopr3g 10714 seq3caopr2 10715 seq3f1olemp 10737 seq3f1oleml 10738 seq3f1o 10739 seqf1oglem2a 10740 seqf1oglem1 10741 seqf1oglem2 10742 seqf1og 10743 seq3id3 10746 seq3id 10747 seq3homo 10749 seq3z 10750 seqhomog 10752 seqfeq4g 10753 seq3distr 10754 ser3ge0 10758 ser3le 10759 leexp2a 10814 hashfz 11043 hashfzo 11044 hashfzp1 11046 seq3coll 11064 rexanuz2 11502 cau4 11627 clim2ser 11848 clim2ser2 11849 climserle 11856 fsum3cvg 11889 fsum3cvg2 11905 fsumsersdc 11906 fsum3ser 11908 fsumm1 11927 fsum1p 11929 telfsumo 11977 fsumparts 11981 cvgcmpub 11987 isumsplit 12002 cvgratnnlemmn 12036 clim2prod 12050 clim2divap 12051 prodfrecap 12057 prodfdivap 12058 ntrivcvgap 12059 fproddccvg 12083 fprodm1 12109 fprodabs 12127 fprodeq0 12128 uzwodc 12558 pcaddlem 12862 fngsum 13421 igsumvalx 13422 gsumfzval 13424 gsumval2 13430 gsumfzz 13528 gsumfzconst 13878 gsumfzfsumlemm 14551 inffz 16440 |
| Copyright terms: Public domain | W3C validator |