| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| eluzel2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uzf 9604 | 
. . . 4
 | |
| 2 | frel 5412 | 
. . . 4
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . 3
 | 
| 4 | relelfvdm 5590 | 
. . 3
 | |
| 5 | 3, 4 | mpan 424 | 
. 2
 | 
| 6 | 1 | fdmi 5415 | 
. 2
 | 
| 7 | 5, 6 | eleqtrdi 2289 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: eluz2 9607 uztrn 9618 uzneg 9620 uzss 9622 uz11 9624 eluzadd 9630 uzm1 9632 uzin 9634 uzind4 9662 elfz5 10092 elfzel1 10099 eluzfz1 10106 fzsplit2 10125 fzopth 10136 fzpred 10145 fzpreddisj 10146 fzdifsuc 10156 uzsplit 10167 uzdisj 10168 elfzp12 10174 fzm1 10175 uznfz 10178 nn0disj 10213 fzolb 10229 fzoss2 10248 fzouzdisj 10256 ige2m2fzo 10274 elfzonelfzo 10306 frec2uzrand 10497 frecfzen2 10519 seq3p1 10557 seqp1cd 10562 seq3clss 10563 seq3feq2 10568 seqfveqg 10570 seq3fveq 10571 seq3shft2 10573 seqshft2g 10574 ser3mono 10579 seq3split 10580 seqsplitg 10581 seq3caopr3 10583 seqcaopr3g 10584 seq3caopr2 10585 seq3f1olemp 10607 seq3f1oleml 10608 seq3f1o 10609 seqf1oglem2a 10610 seqf1oglem1 10611 seqf1oglem2 10612 seqf1og 10613 seq3id3 10616 seq3id 10617 seq3homo 10619 seq3z 10620 seqhomog 10622 seqfeq4g 10623 seq3distr 10624 ser3ge0 10628 ser3le 10629 leexp2a 10684 hashfz 10913 hashfzo 10914 hashfzp1 10916 seq3coll 10934 rexanuz2 11156 cau4 11281 clim2ser 11502 clim2ser2 11503 climserle 11510 fsum3cvg 11543 fsum3cvg2 11559 fsumsersdc 11560 fsum3ser 11562 fsumm1 11581 fsum1p 11583 telfsumo 11631 fsumparts 11635 cvgcmpub 11641 isumsplit 11656 cvgratnnlemmn 11690 clim2prod 11704 clim2divap 11705 prodfrecap 11711 prodfdivap 11712 ntrivcvgap 11713 fproddccvg 11737 fprodm1 11763 fprodabs 11781 fprodeq0 11782 uzwodc 12204 pcaddlem 12508 fngsum 13031 igsumvalx 13032 gsumfzval 13034 gsumval2 13040 gsumfzz 13127 gsumfzconst 13471 gsumfzfsumlemm 14143 inffz 15716 | 
| Copyright terms: Public domain | W3C validator |