| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzel2 | Unicode version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9621 |
. . . 4
| |
| 2 | frel 5415 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | relelfvdm 5593 |
. . 3
| |
| 5 | 3, 4 | mpan 424 |
. 2
|
| 6 | 1 | fdmi 5418 |
. 2
|
| 7 | 5, 6 | eleqtrdi 2289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 df-uz 9619 |
| This theorem is referenced by: eluz2 9624 uztrn 9635 uzneg 9637 uzss 9639 uz11 9641 eluzadd 9647 uzm1 9649 uzin 9651 uzind4 9679 elfz5 10109 elfzel1 10116 eluzfz1 10123 fzsplit2 10142 fzopth 10153 fzpred 10162 fzpreddisj 10163 fzdifsuc 10173 uzsplit 10184 uzdisj 10185 elfzp12 10191 fzm1 10192 uznfz 10195 nn0disj 10230 fzolb 10246 fzoss2 10265 fzouzdisj 10273 ige2m2fzo 10291 elfzonelfzo 10323 frec2uzrand 10514 frecfzen2 10536 seq3p1 10574 seqp1cd 10579 seq3clss 10580 seq3feq2 10585 seqfveqg 10587 seq3fveq 10588 seq3shft2 10590 seqshft2g 10591 ser3mono 10596 seq3split 10597 seqsplitg 10598 seq3caopr3 10600 seqcaopr3g 10601 seq3caopr2 10602 seq3f1olemp 10624 seq3f1oleml 10625 seq3f1o 10626 seqf1oglem2a 10627 seqf1oglem1 10628 seqf1oglem2 10629 seqf1og 10630 seq3id3 10633 seq3id 10634 seq3homo 10636 seq3z 10637 seqhomog 10639 seqfeq4g 10640 seq3distr 10641 ser3ge0 10645 ser3le 10646 leexp2a 10701 hashfz 10930 hashfzo 10931 hashfzp1 10933 seq3coll 10951 rexanuz2 11173 cau4 11298 clim2ser 11519 clim2ser2 11520 climserle 11527 fsum3cvg 11560 fsum3cvg2 11576 fsumsersdc 11577 fsum3ser 11579 fsumm1 11598 fsum1p 11600 telfsumo 11648 fsumparts 11652 cvgcmpub 11658 isumsplit 11673 cvgratnnlemmn 11707 clim2prod 11721 clim2divap 11722 prodfrecap 11728 prodfdivap 11729 ntrivcvgap 11730 fproddccvg 11754 fprodm1 11780 fprodabs 11798 fprodeq0 11799 uzwodc 12229 pcaddlem 12533 fngsum 13090 igsumvalx 13091 gsumfzval 13093 gsumval2 13099 gsumfzz 13197 gsumfzconst 13547 gsumfzfsumlemm 14219 inffz 15803 |
| Copyright terms: Public domain | W3C validator |