Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvexp | Unicode version |
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvexp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . 5 | |
2 | 1 | mpteq2dv 4073 | . . . 4 |
3 | 2 | oveq2d 5858 | . . 3 |
4 | id 19 | . . . . 5 | |
5 | oveq1 5849 | . . . . . 6 | |
6 | 5 | oveq2d 5858 | . . . . 5 |
7 | 4, 6 | oveq12d 5860 | . . . 4 |
8 | 7 | mpteq2dv 4073 | . . 3 |
9 | 3, 8 | eqeq12d 2180 | . 2 |
10 | oveq2 5850 | . . . . 5 | |
11 | 10 | mpteq2dv 4073 | . . . 4 |
12 | 11 | oveq2d 5858 | . . 3 |
13 | id 19 | . . . . 5 | |
14 | oveq1 5849 | . . . . . 6 | |
15 | 14 | oveq2d 5858 | . . . . 5 |
16 | 13, 15 | oveq12d 5860 | . . . 4 |
17 | 16 | mpteq2dv 4073 | . . 3 |
18 | 12, 17 | eqeq12d 2180 | . 2 |
19 | oveq2 5850 | . . . . 5 | |
20 | 19 | mpteq2dv 4073 | . . . 4 |
21 | 20 | oveq2d 5858 | . . 3 |
22 | id 19 | . . . . 5 | |
23 | oveq1 5849 | . . . . . 6 | |
24 | 23 | oveq2d 5858 | . . . . 5 |
25 | 22, 24 | oveq12d 5860 | . . . 4 |
26 | 25 | mpteq2dv 4073 | . . 3 |
27 | 21, 26 | eqeq12d 2180 | . 2 |
28 | oveq2 5850 | . . . . 5 | |
29 | 28 | mpteq2dv 4073 | . . . 4 |
30 | 29 | oveq2d 5858 | . . 3 |
31 | id 19 | . . . . 5 | |
32 | oveq1 5849 | . . . . . 6 | |
33 | 32 | oveq2d 5858 | . . . . 5 |
34 | 31, 33 | oveq12d 5860 | . . . 4 |
35 | 34 | mpteq2dv 4073 | . . 3 |
36 | 30, 35 | eqeq12d 2180 | . 2 |
37 | exp1 10461 | . . . . . 6 | |
38 | 37 | mpteq2ia 4068 | . . . . 5 |
39 | mptresid 4938 | . . . . 5 | |
40 | 38, 39 | eqtri 2186 | . . . 4 |
41 | 40 | oveq2i 5853 | . . 3 |
42 | 1m1e0 8926 | . . . . . . . . . 10 | |
43 | 42 | oveq2i 5853 | . . . . . . . . 9 |
44 | exp0 10459 | . . . . . . . . 9 | |
45 | 43, 44 | syl5eq 2211 | . . . . . . . 8 |
46 | 45 | oveq2d 5858 | . . . . . . 7 |
47 | 1t1e1 9009 | . . . . . . 7 | |
48 | 46, 47 | eqtrdi 2215 | . . . . . 6 |
49 | 48 | mpteq2ia 4068 | . . . . 5 |
50 | fconstmpt 4651 | . . . . 5 | |
51 | 49, 50 | eqtr4i 2189 | . . . 4 |
52 | dvid 13302 | . . . 4 | |
53 | 51, 52 | eqtr4i 2189 | . . 3 |
54 | 41, 53 | eqtr4i 2189 | . 2 |
55 | nncn 8865 | . . . . . . . . . . . 12 | |
56 | 55 | adantr 274 | . . . . . . . . . . 11 |
57 | ax-1cn 7846 | . . . . . . . . . . 11 | |
58 | pncan 8104 | . . . . . . . . . . 11 | |
59 | 56, 57, 58 | sylancl 410 | . . . . . . . . . 10 |
60 | 59 | oveq2d 5858 | . . . . . . . . 9 |
61 | 60 | oveq2d 5858 | . . . . . . . 8 |
62 | 57 | a1i 9 | . . . . . . . . 9 |
63 | id 19 | . . . . . . . . . 10 | |
64 | nnnn0 9121 | . . . . . . . . . 10 | |
65 | expcl 10473 | . . . . . . . . . 10 | |
66 | 63, 64, 65 | syl2anr 288 | . . . . . . . . 9 |
67 | 56, 62, 66 | adddird 7924 | . . . . . . . 8 |
68 | 66 | mulid2d 7917 | . . . . . . . . 9 |
69 | 68 | oveq2d 5858 | . . . . . . . 8 |
70 | 61, 67, 69 | 3eqtrd 2202 | . . . . . . 7 |
71 | 70 | mpteq2dva 4072 | . . . . . 6 |
72 | cnex 7877 | . . . . . . . 8 | |
73 | 72 | a1i 9 | . . . . . . 7 |
74 | 56, 66 | mulcld 7919 | . . . . . . 7 |
75 | nnm1nn0 9155 | . . . . . . . . . . 11 | |
76 | expcl 10473 | . . . . . . . . . . 11 | |
77 | 63, 75, 76 | syl2anr 288 | . . . . . . . . . 10 |
78 | 56, 77 | mulcld 7919 | . . . . . . . . 9 |
79 | simpr 109 | . . . . . . . . 9 | |
80 | eqidd 2166 | . . . . . . . . 9 | |
81 | 39 | eqcomi 2169 | . . . . . . . . . 10 |
82 | 81 | a1i 9 | . . . . . . . . 9 |
83 | 73, 78, 79, 80, 82 | offval2 6065 | . . . . . . . 8 |
84 | 56, 77, 79 | mulassd 7922 | . . . . . . . . . 10 |
85 | expm1t 10483 | . . . . . . . . . . . 12 | |
86 | 85 | ancoms 266 | . . . . . . . . . . 11 |
87 | 86 | oveq2d 5858 | . . . . . . . . . 10 |
88 | 84, 87 | eqtr4d 2201 | . . . . . . . . 9 |
89 | 88 | mpteq2dva 4072 | . . . . . . . 8 |
90 | 83, 89 | eqtrd 2198 | . . . . . . 7 |
91 | 52, 50 | eqtri 2186 | . . . . . . . . . 10 |
92 | 91 | a1i 9 | . . . . . . . . 9 |
93 | eqidd 2166 | . . . . . . . . 9 | |
94 | 73, 62, 66, 92, 93 | offval2 6065 | . . . . . . . 8 |
95 | 68 | mpteq2dva 4072 | . . . . . . . 8 |
96 | 94, 95 | eqtrd 2198 | . . . . . . 7 |
97 | 73, 74, 66, 90, 96 | offval2 6065 | . . . . . 6 |
98 | 71, 97 | eqtr4d 2201 | . . . . 5 |
99 | oveq1 5849 | . . . . . . 7 | |
100 | 99 | oveq1d 5857 | . . . . . 6 |
101 | 100 | eqcomd 2171 | . . . . 5 |
102 | 98, 101 | sylan9eq 2219 | . . . 4 |
103 | cnelprrecn 7889 | . . . . . 6 | |
104 | 103 | a1i 9 | . . . . 5 |
105 | ssidd 3163 | . . . . 5 | |
106 | 66 | fmpttd 5640 | . . . . . 6 |
107 | 106 | adantr 274 | . . . . 5 |
108 | f1oi 5470 | . . . . . 6 | |
109 | f1of 5432 | . . . . . 6 | |
110 | 108, 109 | mp1i 10 | . . . . 5 |
111 | simpr 109 | . . . . . . 7 | |
112 | 111 | dmeqd 4806 | . . . . . 6 |
113 | 78 | fmpttd 5640 | . . . . . . . 8 |
114 | 113 | adantr 274 | . . . . . . 7 |
115 | 114 | fdmd 5344 | . . . . . 6 |
116 | 112, 115 | eqtrd 2198 | . . . . 5 |
117 | 1ex 7894 | . . . . . . . . 9 | |
118 | 117 | fconst 5383 | . . . . . . . 8 |
119 | 52 | feq1i 5330 | . . . . . . . 8 |
120 | 118, 119 | mpbir 145 | . . . . . . 7 |
121 | 120 | fdmi 5345 | . . . . . 6 |
122 | 121 | a1i 9 | . . . . 5 |
123 | 104, 105, 107, 110, 116, 122 | dvimulf 13310 | . . . 4 |
124 | 73, 66, 79, 93, 82 | offval2 6065 | . . . . . . 7 |
125 | expp1 10462 | . . . . . . . . 9 | |
126 | 63, 64, 125 | syl2anr 288 | . . . . . . . 8 |
127 | 126 | mpteq2dva 4072 | . . . . . . 7 |
128 | 124, 127 | eqtr4d 2201 | . . . . . 6 |
129 | 128 | oveq2d 5858 | . . . . 5 |
130 | 129 | adantr 274 | . . . 4 |
131 | 102, 123, 130 | 3eqtr2rd 2205 | . . 3 |
132 | 131 | ex 114 | . 2 |
133 | 9, 18, 27, 36, 54, 132 | nnind 8873 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 csn 3576 cpr 3577 cmpt 4043 cid 4266 cxp 4602 cdm 4604 cres 4606 wf 5184 wf1o 5187 (class class class)co 5842 cof 6048 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 cmin 8069 cn 8857 cn0 9114 cexp 10454 cdv 13264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-map 6616 df-pm 6617 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 |
This theorem is referenced by: dvexp2 13316 |
Copyright terms: Public domain | W3C validator |