ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvexp Unicode version

Theorem dvexp 12829
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Distinct variable group:    x, N

Proof of Theorem dvexp
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5775 . . . . 5  |-  ( n  =  1  ->  (
x ^ n )  =  ( x ^
1 ) )
21mpteq2dv 4014 . . . 4  |-  ( n  =  1  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 1 ) ) )
32oveq2d 5783 . . 3  |-  ( n  =  1  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ 1 ) ) ) )
4 id 19 . . . . 5  |-  ( n  =  1  ->  n  =  1 )
5 oveq1 5774 . . . . . 6  |-  ( n  =  1  ->  (
n  -  1 )  =  ( 1  -  1 ) )
65oveq2d 5783 . . . . 5  |-  ( n  =  1  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( 1  -  1 ) ) )
74, 6oveq12d 5785 . . . 4  |-  ( n  =  1  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( 1  x.  ( x ^ (
1  -  1 ) ) ) )
87mpteq2dv 4014 . . 3  |-  ( n  =  1  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) ) )
93, 8eqeq12d 2152 . 2  |-  ( n  =  1  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ 1 ) ) )  =  ( x  e.  CC  |->  ( 1  x.  (
x ^ ( 1  -  1 ) ) ) ) ) )
10 oveq2 5775 . . . . 5  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
1110mpteq2dv 4014 . . . 4  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
1211oveq2d 5783 . . 3  |-  ( n  =  k  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ k
) ) ) )
13 id 19 . . . . 5  |-  ( n  =  k  ->  n  =  k )
14 oveq1 5774 . . . . . 6  |-  ( n  =  k  ->  (
n  -  1 )  =  ( k  - 
1 ) )
1514oveq2d 5783 . . . . 5  |-  ( n  =  k  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( k  -  1 ) ) )
1613, 15oveq12d 5785 . . . 4  |-  ( n  =  k  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( k  x.  ( x ^ (
k  -  1 ) ) ) )
1716mpteq2dv 4014 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) ) )
1812, 17eqeq12d 2152 . 2  |-  ( n  =  k  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ k
) ) )  =  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) ) ) )
19 oveq2 5775 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
2019mpteq2dv 4014 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
2120oveq2d 5783 . . 3  |-  ( n  =  ( k  +  1 )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) ) )
22 id 19 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
23 oveq1 5774 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (
n  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
2423oveq2d 5783 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( ( k  +  1 )  -  1 ) ) )
2522, 24oveq12d 5785 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( ( k  +  1 )  x.  ( x ^ (
( k  +  1 )  -  1 ) ) ) )
2625mpteq2dv 4014 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^
( ( k  +  1 )  -  1 ) ) ) ) )
2721, 26eqeq12d 2152 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
28 oveq2 5775 . . . . 5  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
2928mpteq2dv 4014 . . . 4  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
3029oveq2d 5783 . . 3  |-  ( n  =  N  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) ) )
31 id 19 . . . . 5  |-  ( n  =  N  ->  n  =  N )
32 oveq1 5774 . . . . . 6  |-  ( n  =  N  ->  (
n  -  1 )  =  ( N  - 
1 ) )
3332oveq2d 5783 . . . . 5  |-  ( n  =  N  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( N  -  1 ) ) )
3431, 33oveq12d 5785 . . . 4  |-  ( n  =  N  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( N  x.  ( x ^ ( N  -  1 ) ) ) )
3534mpteq2dv 4014 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^
( N  -  1 ) ) ) ) )
3630, 35eqeq12d 2152 . 2  |-  ( n  =  N  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) )  =  ( x  e.  CC  |->  ( N  x.  (
x ^ ( N  -  1 ) ) ) ) ) )
37 exp1 10292 . . . . . 6  |-  ( x  e.  CC  ->  (
x ^ 1 )  =  x )
3837mpteq2ia 4009 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ 1 ) )  =  ( x  e.  CC  |->  x )
39 mptresid 4868 . . . . 5  |-  ( x  e.  CC  |->  x )  =  (  _I  |`  CC )
4038, 39eqtri 2158 . . . 4  |-  ( x  e.  CC  |->  ( x ^ 1 ) )  =  (  _I  |`  CC )
4140oveq2i 5778 . . 3  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
1 ) ) )  =  ( CC  _D  (  _I  |`  CC ) )
42 1m1e0 8782 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4342oveq2i 5778 . . . . . . . . 9  |-  ( x ^ ( 1  -  1 ) )  =  ( x ^ 0 )
44 exp0 10290 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
4543, 44syl5eq 2182 . . . . . . . 8  |-  ( x  e.  CC  ->  (
x ^ ( 1  -  1 ) )  =  1 )
4645oveq2d 5783 . . . . . . 7  |-  ( x  e.  CC  ->  (
1  x.  ( x ^ ( 1  -  1 ) ) )  =  ( 1  x.  1 ) )
47 1t1e1 8865 . . . . . . 7  |-  ( 1  x.  1 )  =  1
4846, 47syl6eq 2186 . . . . . 6  |-  ( x  e.  CC  ->  (
1  x.  ( x ^ ( 1  -  1 ) ) )  =  1 )
4948mpteq2ia 4009 . . . . 5  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( x  e.  CC  |->  1 )
50 fconstmpt 4581 . . . . 5  |-  ( CC 
X.  { 1 } )  =  ( x  e.  CC  |->  1 )
5149, 50eqtr4i 2161 . . . 4  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( CC  X.  { 1 } )
52 dvid 12816 . . . 4  |-  ( CC 
_D  (  _I  |`  CC ) )  =  ( CC 
X.  { 1 } )
5351, 52eqtr4i 2161 . . 3  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( CC  _D  (  _I  |`  CC ) )
5441, 53eqtr4i 2161 . 2  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
1 ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^ (
1  -  1 ) ) ) )
55 nncn 8721 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  CC )
5655adantr 274 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  k  e.  CC )
57 ax-1cn 7706 . . . . . . . . . . 11  |-  1  e.  CC
58 pncan 7961 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
5956, 57, 58sylancl 409 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
6059oveq2d 5783 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
( k  +  1 )  -  1 ) )  =  ( x ^ k ) )
6160oveq2d 5783 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( k  +  1 )  x.  ( x ^
k ) ) )
6257a1i 9 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  1  e.  CC )
63 id 19 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x  e.  CC )
64 nnnn0 8977 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN0 )
65 expcl 10304 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
6663, 64, 65syl2anr 288 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ k
)  e.  CC )
6756, 62, 66adddird 7784 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ k ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( 1  x.  ( x ^ k
) ) ) )
6866mulid2d 7777 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( 1  x.  (
x ^ k ) )  =  ( x ^ k ) )
6968oveq2d 5783 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ k
) )  +  ( 1  x.  ( x ^ k ) ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) )
7061, 67, 693eqtrd 2174 . . . . . . 7  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) )
7170mpteq2dva 4013 . . . . . 6  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) ) )
72 cnex 7737 . . . . . . . 8  |-  CC  e.  _V
7372a1i 9 . . . . . . 7  |-  ( k  e.  NN  ->  CC  e.  _V )
7456, 66mulcld 7779 . . . . . . 7  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ k ) )  e.  CC )
75 nnm1nn0 9011 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
76 expcl 10304 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( k  -  1 )  e.  NN0 )  ->  ( x ^ (
k  -  1 ) )  e.  CC )
7763, 75, 76syl2anr 288 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
k  -  1 ) )  e.  CC )
7856, 77mulcld 7779 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ ( k  -  1 ) ) )  e.  CC )
79 simpr 109 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  x  e.  CC )
80 eqidd 2138 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) ) )
8139eqcomi 2141 . . . . . . . . . 10  |-  (  _I  |`  CC )  =  ( x  e.  CC  |->  x )
8281a1i 9 . . . . . . . . 9  |-  ( k  e.  NN  ->  (  _I  |`  CC )  =  ( x  e.  CC  |->  x ) )
8373, 78, 79, 80, 82offval2 5990 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( ( k  x.  ( x ^ ( k  - 
1 ) ) )  x.  x ) ) )
8456, 77, 79mulassd 7782 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ (
k  -  1 ) ) )  x.  x
)  =  ( k  x.  ( ( x ^ ( k  - 
1 ) )  x.  x ) ) )
85 expm1t 10314 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  k  e.  NN )  ->  ( x ^ k
)  =  ( ( x ^ ( k  -  1 ) )  x.  x ) )
8685ancoms 266 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ k
)  =  ( ( x ^ ( k  -  1 ) )  x.  x ) )
8786oveq2d 5783 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ k ) )  =  ( k  x.  ( ( x ^ ( k  - 
1 ) )  x.  x ) ) )
8884, 87eqtr4d 2173 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ (
k  -  1 ) ) )  x.  x
)  =  ( k  x.  ( x ^
k ) ) )
8988mpteq2dva 4013 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  x.  (
x ^ ( k  -  1 ) ) )  x.  x ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
k ) ) ) )
9083, 89eqtrd 2170 . . . . . . 7  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
k ) ) ) )
9152, 50eqtri 2158 . . . . . . . . . 10  |-  ( CC 
_D  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  1 )
9291a1i 9 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( CC  _D  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  1 ) )
93 eqidd 2138 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ k ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9473, 62, 66, 92, 93offval2 5990 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( CC  _D  (  _I  |`  CC ) )  oF  x.  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^ k ) ) ) )
9568mpteq2dva 4013 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( 1  x.  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9694, 95eqtrd 2170 . . . . . . 7  |-  ( k  e.  NN  ->  (
( CC  _D  (  _I  |`  CC ) )  oF  x.  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9773, 74, 66, 90, 96offval2 5990 . . . . . 6  |-  ( k  e.  NN  ->  (
( ( x  e.  CC  |->  ( k  x.  ( x ^ (
k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k ) ) ) )  =  ( x  e.  CC  |->  ( ( k  x.  (
x ^ k ) )  +  ( x ^ k ) ) ) )
9871, 97eqtr4d 2173 . . . . 5  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( ( ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
99 oveq1 5774 . . . . . . 7  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( CC 
_D  ( x  e.  CC  |->  ( x ^
k ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) ) )
10099oveq1d 5782 . . . . . 6  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) )  =  ( ( ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
101100eqcomd 2143 . . . . 5  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) )  =  ( ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
10298, 101sylan9eq 2190 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( ( ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
103 cnelprrecn 7749 . . . . . 6  |-  CC  e.  { RR ,  CC }
104103a1i 9 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  CC  e.  { RR ,  CC } )
105 ssidd 3113 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  CC  C_  CC )
10666fmpttd 5568 . . . . . 6  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ k ) ) : CC --> CC )
107106adantr 274 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( x ^ k ) ) : CC --> CC )
108 f1oi 5398 . . . . . 6  |-  (  _I  |`  CC ) : CC -1-1-onto-> CC
109 f1of 5360 . . . . . 6  |-  ( (  _I  |`  CC ) : CC -1-1-onto-> CC  ->  (  _I  |`  CC ) : CC --> CC )
110108, 109mp1i 10 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (  _I  |`  CC ) : CC --> CC )
111 simpr 109 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ (
k  -  1 ) ) ) ) )
112111dmeqd 4736 . . . . . 6  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  dom  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) ) )
11378fmpttd 5568 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) : CC --> CC )
114113adantr 274 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) : CC --> CC )
115114fdmd 5274 . . . . . 6  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  =  CC )
116112, 115eqtrd 2170 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  CC )
117 1ex 7754 . . . . . . . . 9  |-  1  e.  _V
118117fconst 5313 . . . . . . . 8  |-  ( CC 
X.  { 1 } ) : CC --> { 1 }
11952feq1i 5260 . . . . . . . 8  |-  ( ( CC  _D  (  _I  |`  CC ) ) : CC --> { 1 }  <-> 
( CC  X.  {
1 } ) : CC --> { 1 } )
120118, 119mpbir 145 . . . . . . 7  |-  ( CC 
_D  (  _I  |`  CC ) ) : CC --> { 1 }
121120fdmi 5275 . . . . . 6  |-  dom  ( CC  _D  (  _I  |`  CC ) )  =  CC
122121a1i 9 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (  _I  |`  CC ) )  =  CC )
123104, 105, 107, 110, 116, 122dvimulf 12824 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( ( ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
12473, 66, 79, 93, 82offval2 5990 . . . . . . 7  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( x ^ k
) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
125 expp1 10293 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
12663, 64, 125syl2anr 288 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
127126mpteq2dva 4013 . . . . . . 7  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
128124, 127eqtr4d 2173 . . . . . 6  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( x ^ k
) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
129128oveq2d 5783 . . . . 5  |-  ( k  e.  NN  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( CC 
_D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) ) )
130129adantr 274 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( CC 
_D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) ) )
131102, 123, 1303eqtr2rd 2177 . . 3  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ (
( k  +  1 )  -  1 ) ) ) ) )
132131ex 114 . 2  |-  ( k  e.  NN  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
1339, 18, 27, 36, 54, 132nnind 8729 1  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2681   {csn 3522   {cpr 3523    |-> cmpt 3984    _I cid 4205    X. cxp 4532   dom cdm 4534    |` cres 4536   -->wf 5114   -1-1-onto->wf1o 5117  (class class class)co 5767    oFcof 5973   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    - cmin 7926   NNcn 8713   NN0cn0 8970   ^cexp 10285    _D cdv 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733  ax-addf 7735  ax-mulf 7736
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-of 5975  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-pm 6538  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-rest 12107  df-topgen 12126  df-psmet 12141  df-xmet 12142  df-met 12143  df-bl 12144  df-mopn 12145  df-top 12150  df-topon 12163  df-bases 12195  df-ntr 12250  df-cn 12342  df-cnp 12343  df-tx 12407  df-cncf 12712  df-limced 12779  df-dvap 12780
This theorem is referenced by:  dvexp2  12830
  Copyright terms: Public domain W3C validator