| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvexp | Unicode version | ||
| Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5954 |
. . . . 5
| |
| 2 | 1 | mpteq2dv 4136 |
. . . 4
|
| 3 | 2 | oveq2d 5962 |
. . 3
|
| 4 | id 19 |
. . . . 5
| |
| 5 | oveq1 5953 |
. . . . . 6
| |
| 6 | 5 | oveq2d 5962 |
. . . . 5
|
| 7 | 4, 6 | oveq12d 5964 |
. . . 4
|
| 8 | 7 | mpteq2dv 4136 |
. . 3
|
| 9 | 3, 8 | eqeq12d 2220 |
. 2
|
| 10 | oveq2 5954 |
. . . . 5
| |
| 11 | 10 | mpteq2dv 4136 |
. . . 4
|
| 12 | 11 | oveq2d 5962 |
. . 3
|
| 13 | id 19 |
. . . . 5
| |
| 14 | oveq1 5953 |
. . . . . 6
| |
| 15 | 14 | oveq2d 5962 |
. . . . 5
|
| 16 | 13, 15 | oveq12d 5964 |
. . . 4
|
| 17 | 16 | mpteq2dv 4136 |
. . 3
|
| 18 | 12, 17 | eqeq12d 2220 |
. 2
|
| 19 | oveq2 5954 |
. . . . 5
| |
| 20 | 19 | mpteq2dv 4136 |
. . . 4
|
| 21 | 20 | oveq2d 5962 |
. . 3
|
| 22 | id 19 |
. . . . 5
| |
| 23 | oveq1 5953 |
. . . . . 6
| |
| 24 | 23 | oveq2d 5962 |
. . . . 5
|
| 25 | 22, 24 | oveq12d 5964 |
. . . 4
|
| 26 | 25 | mpteq2dv 4136 |
. . 3
|
| 27 | 21, 26 | eqeq12d 2220 |
. 2
|
| 28 | oveq2 5954 |
. . . . 5
| |
| 29 | 28 | mpteq2dv 4136 |
. . . 4
|
| 30 | 29 | oveq2d 5962 |
. . 3
|
| 31 | id 19 |
. . . . 5
| |
| 32 | oveq1 5953 |
. . . . . 6
| |
| 33 | 32 | oveq2d 5962 |
. . . . 5
|
| 34 | 31, 33 | oveq12d 5964 |
. . . 4
|
| 35 | 34 | mpteq2dv 4136 |
. . 3
|
| 36 | 30, 35 | eqeq12d 2220 |
. 2
|
| 37 | exp1 10692 |
. . . . . 6
| |
| 38 | 37 | mpteq2ia 4131 |
. . . . 5
|
| 39 | mptresid 5014 |
. . . . 5
| |
| 40 | 38, 39 | eqtr4i 2229 |
. . . 4
|
| 41 | 40 | oveq2i 5957 |
. . 3
|
| 42 | 1m1e0 9107 |
. . . . . . . . . 10
| |
| 43 | 42 | oveq2i 5957 |
. . . . . . . . 9
|
| 44 | exp0 10690 |
. . . . . . . . 9
| |
| 45 | 43, 44 | eqtrid 2250 |
. . . . . . . 8
|
| 46 | 45 | oveq2d 5962 |
. . . . . . 7
|
| 47 | 1t1e1 9191 |
. . . . . . 7
| |
| 48 | 46, 47 | eqtrdi 2254 |
. . . . . 6
|
| 49 | 48 | mpteq2ia 4131 |
. . . . 5
|
| 50 | fconstmpt 4723 |
. . . . 5
| |
| 51 | 49, 50 | eqtr4i 2229 |
. . . 4
|
| 52 | dvid 15200 |
. . . 4
| |
| 53 | 51, 52 | eqtr4i 2229 |
. . 3
|
| 54 | 41, 53 | eqtr4i 2229 |
. 2
|
| 55 | nncn 9046 |
. . . . . . . . . . . 12
| |
| 56 | 55 | adantr 276 |
. . . . . . . . . . 11
|
| 57 | ax-1cn 8020 |
. . . . . . . . . . 11
| |
| 58 | pncan 8280 |
. . . . . . . . . . 11
| |
| 59 | 56, 57, 58 | sylancl 413 |
. . . . . . . . . 10
|
| 60 | 59 | oveq2d 5962 |
. . . . . . . . 9
|
| 61 | 60 | oveq2d 5962 |
. . . . . . . 8
|
| 62 | 57 | a1i 9 |
. . . . . . . . 9
|
| 63 | id 19 |
. . . . . . . . . 10
| |
| 64 | nnnn0 9304 |
. . . . . . . . . 10
| |
| 65 | expcl 10704 |
. . . . . . . . . 10
| |
| 66 | 63, 64, 65 | syl2anr 290 |
. . . . . . . . 9
|
| 67 | 56, 62, 66 | adddird 8100 |
. . . . . . . 8
|
| 68 | 66 | mulid2d 8093 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 5962 |
. . . . . . . 8
|
| 70 | 61, 67, 69 | 3eqtrd 2242 |
. . . . . . 7
|
| 71 | 70 | mpteq2dva 4135 |
. . . . . 6
|
| 72 | cnex 8051 |
. . . . . . . 8
| |
| 73 | 72 | a1i 9 |
. . . . . . 7
|
| 74 | 56, 66 | mulcld 8095 |
. . . . . . 7
|
| 75 | nnm1nn0 9338 |
. . . . . . . . . . 11
| |
| 76 | expcl 10704 |
. . . . . . . . . . 11
| |
| 77 | 63, 75, 76 | syl2anr 290 |
. . . . . . . . . 10
|
| 78 | 56, 77 | mulcld 8095 |
. . . . . . . . 9
|
| 79 | simpr 110 |
. . . . . . . . 9
| |
| 80 | eqidd 2206 |
. . . . . . . . 9
| |
| 81 | 39 | a1i 9 |
. . . . . . . . 9
|
| 82 | 73, 78, 79, 80, 81 | offval2 6176 |
. . . . . . . 8
|
| 83 | 56, 77, 79 | mulassd 8098 |
. . . . . . . . . 10
|
| 84 | expm1t 10714 |
. . . . . . . . . . . 12
| |
| 85 | 84 | ancoms 268 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 5962 |
. . . . . . . . . 10
|
| 87 | 83, 86 | eqtr4d 2241 |
. . . . . . . . 9
|
| 88 | 87 | mpteq2dva 4135 |
. . . . . . . 8
|
| 89 | 82, 88 | eqtrd 2238 |
. . . . . . 7
|
| 90 | 52, 50 | eqtri 2226 |
. . . . . . . . . 10
|
| 91 | 90 | a1i 9 |
. . . . . . . . 9
|
| 92 | eqidd 2206 |
. . . . . . . . 9
| |
| 93 | 73, 62, 66, 91, 92 | offval2 6176 |
. . . . . . . 8
|
| 94 | 68 | mpteq2dva 4135 |
. . . . . . . 8
|
| 95 | 93, 94 | eqtrd 2238 |
. . . . . . 7
|
| 96 | 73, 74, 66, 89, 95 | offval2 6176 |
. . . . . 6
|
| 97 | 71, 96 | eqtr4d 2241 |
. . . . 5
|
| 98 | oveq1 5953 |
. . . . . . 7
| |
| 99 | 98 | oveq1d 5961 |
. . . . . 6
|
| 100 | 99 | eqcomd 2211 |
. . . . 5
|
| 101 | 97, 100 | sylan9eq 2258 |
. . . 4
|
| 102 | cnelprrecn 8063 |
. . . . . 6
| |
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | ssidd 3214 |
. . . . 5
| |
| 105 | 66 | fmpttd 5737 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | f1oi 5562 |
. . . . . 6
| |
| 108 | f1of 5524 |
. . . . . 6
| |
| 109 | 107, 108 | mp1i 10 |
. . . . 5
|
| 110 | simpr 110 |
. . . . . . 7
| |
| 111 | 110 | dmeqd 4881 |
. . . . . 6
|
| 112 | 78 | fmpttd 5737 |
. . . . . . . 8
|
| 113 | 112 | adantr 276 |
. . . . . . 7
|
| 114 | 113 | fdmd 5434 |
. . . . . 6
|
| 115 | 111, 114 | eqtrd 2238 |
. . . . 5
|
| 116 | 1ex 8069 |
. . . . . . . . 9
| |
| 117 | 116 | fconst 5473 |
. . . . . . . 8
|
| 118 | 52 | feq1i 5420 |
. . . . . . . 8
|
| 119 | 117, 118 | mpbir 146 |
. . . . . . 7
|
| 120 | 119 | fdmi 5435 |
. . . . . 6
|
| 121 | 120 | a1i 9 |
. . . . 5
|
| 122 | 103, 104, 106, 109, 115, 121 | dvimulf 15211 |
. . . 4
|
| 123 | 73, 66, 79, 92, 81 | offval2 6176 |
. . . . . . 7
|
| 124 | expp1 10693 |
. . . . . . . . 9
| |
| 125 | 63, 64, 124 | syl2anr 290 |
. . . . . . . 8
|
| 126 | 125 | mpteq2dva 4135 |
. . . . . . 7
|
| 127 | 123, 126 | eqtr4d 2241 |
. . . . . 6
|
| 128 | 127 | oveq2d 5962 |
. . . . 5
|
| 129 | 128 | adantr 276 |
. . . 4
|
| 130 | 101, 122, 129 | 3eqtr2rd 2245 |
. . 3
|
| 131 | 130 | ex 115 |
. 2
|
| 132 | 9, 18, 27, 36, 54, 131 | nnind 9054 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 ax-addf 8049 ax-mulf 8050 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-of 6160 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-map 6739 df-pm 6740 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-xneg 9896 df-xadd 9897 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-rest 13106 df-topgen 13125 df-psmet 14338 df-xmet 14339 df-met 14340 df-bl 14341 df-mopn 14342 df-top 14503 df-topon 14516 df-bases 14548 df-ntr 14601 df-cn 14693 df-cnp 14694 df-tx 14758 df-cncf 15076 df-limced 15161 df-dvap 15162 |
| This theorem is referenced by: dvexp2 15217 |
| Copyright terms: Public domain | W3C validator |