| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvexp | Unicode version | ||
| Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . 5
| |
| 2 | 1 | mpteq2dv 4151 |
. . . 4
|
| 3 | 2 | oveq2d 5983 |
. . 3
|
| 4 | id 19 |
. . . . 5
| |
| 5 | oveq1 5974 |
. . . . . 6
| |
| 6 | 5 | oveq2d 5983 |
. . . . 5
|
| 7 | 4, 6 | oveq12d 5985 |
. . . 4
|
| 8 | 7 | mpteq2dv 4151 |
. . 3
|
| 9 | 3, 8 | eqeq12d 2222 |
. 2
|
| 10 | oveq2 5975 |
. . . . 5
| |
| 11 | 10 | mpteq2dv 4151 |
. . . 4
|
| 12 | 11 | oveq2d 5983 |
. . 3
|
| 13 | id 19 |
. . . . 5
| |
| 14 | oveq1 5974 |
. . . . . 6
| |
| 15 | 14 | oveq2d 5983 |
. . . . 5
|
| 16 | 13, 15 | oveq12d 5985 |
. . . 4
|
| 17 | 16 | mpteq2dv 4151 |
. . 3
|
| 18 | 12, 17 | eqeq12d 2222 |
. 2
|
| 19 | oveq2 5975 |
. . . . 5
| |
| 20 | 19 | mpteq2dv 4151 |
. . . 4
|
| 21 | 20 | oveq2d 5983 |
. . 3
|
| 22 | id 19 |
. . . . 5
| |
| 23 | oveq1 5974 |
. . . . . 6
| |
| 24 | 23 | oveq2d 5983 |
. . . . 5
|
| 25 | 22, 24 | oveq12d 5985 |
. . . 4
|
| 26 | 25 | mpteq2dv 4151 |
. . 3
|
| 27 | 21, 26 | eqeq12d 2222 |
. 2
|
| 28 | oveq2 5975 |
. . . . 5
| |
| 29 | 28 | mpteq2dv 4151 |
. . . 4
|
| 30 | 29 | oveq2d 5983 |
. . 3
|
| 31 | id 19 |
. . . . 5
| |
| 32 | oveq1 5974 |
. . . . . 6
| |
| 33 | 32 | oveq2d 5983 |
. . . . 5
|
| 34 | 31, 33 | oveq12d 5985 |
. . . 4
|
| 35 | 34 | mpteq2dv 4151 |
. . 3
|
| 36 | 30, 35 | eqeq12d 2222 |
. 2
|
| 37 | exp1 10727 |
. . . . . 6
| |
| 38 | 37 | mpteq2ia 4146 |
. . . . 5
|
| 39 | mptresid 5032 |
. . . . 5
| |
| 40 | 38, 39 | eqtr4i 2231 |
. . . 4
|
| 41 | 40 | oveq2i 5978 |
. . 3
|
| 42 | 1m1e0 9140 |
. . . . . . . . . 10
| |
| 43 | 42 | oveq2i 5978 |
. . . . . . . . 9
|
| 44 | exp0 10725 |
. . . . . . . . 9
| |
| 45 | 43, 44 | eqtrid 2252 |
. . . . . . . 8
|
| 46 | 45 | oveq2d 5983 |
. . . . . . 7
|
| 47 | 1t1e1 9224 |
. . . . . . 7
| |
| 48 | 46, 47 | eqtrdi 2256 |
. . . . . 6
|
| 49 | 48 | mpteq2ia 4146 |
. . . . 5
|
| 50 | fconstmpt 4740 |
. . . . 5
| |
| 51 | 49, 50 | eqtr4i 2231 |
. . . 4
|
| 52 | dvid 15282 |
. . . 4
| |
| 53 | 51, 52 | eqtr4i 2231 |
. . 3
|
| 54 | 41, 53 | eqtr4i 2231 |
. 2
|
| 55 | nncn 9079 |
. . . . . . . . . . . 12
| |
| 56 | 55 | adantr 276 |
. . . . . . . . . . 11
|
| 57 | ax-1cn 8053 |
. . . . . . . . . . 11
| |
| 58 | pncan 8313 |
. . . . . . . . . . 11
| |
| 59 | 56, 57, 58 | sylancl 413 |
. . . . . . . . . 10
|
| 60 | 59 | oveq2d 5983 |
. . . . . . . . 9
|
| 61 | 60 | oveq2d 5983 |
. . . . . . . 8
|
| 62 | 57 | a1i 9 |
. . . . . . . . 9
|
| 63 | id 19 |
. . . . . . . . . 10
| |
| 64 | nnnn0 9337 |
. . . . . . . . . 10
| |
| 65 | expcl 10739 |
. . . . . . . . . 10
| |
| 66 | 63, 64, 65 | syl2anr 290 |
. . . . . . . . 9
|
| 67 | 56, 62, 66 | adddird 8133 |
. . . . . . . 8
|
| 68 | 66 | mulid2d 8126 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 5983 |
. . . . . . . 8
|
| 70 | 61, 67, 69 | 3eqtrd 2244 |
. . . . . . 7
|
| 71 | 70 | mpteq2dva 4150 |
. . . . . 6
|
| 72 | cnex 8084 |
. . . . . . . 8
| |
| 73 | 72 | a1i 9 |
. . . . . . 7
|
| 74 | 56, 66 | mulcld 8128 |
. . . . . . 7
|
| 75 | nnm1nn0 9371 |
. . . . . . . . . . 11
| |
| 76 | expcl 10739 |
. . . . . . . . . . 11
| |
| 77 | 63, 75, 76 | syl2anr 290 |
. . . . . . . . . 10
|
| 78 | 56, 77 | mulcld 8128 |
. . . . . . . . 9
|
| 79 | simpr 110 |
. . . . . . . . 9
| |
| 80 | eqidd 2208 |
. . . . . . . . 9
| |
| 81 | 39 | a1i 9 |
. . . . . . . . 9
|
| 82 | 73, 78, 79, 80, 81 | offval2 6197 |
. . . . . . . 8
|
| 83 | 56, 77, 79 | mulassd 8131 |
. . . . . . . . . 10
|
| 84 | expm1t 10749 |
. . . . . . . . . . . 12
| |
| 85 | 84 | ancoms 268 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 5983 |
. . . . . . . . . 10
|
| 87 | 83, 86 | eqtr4d 2243 |
. . . . . . . . 9
|
| 88 | 87 | mpteq2dva 4150 |
. . . . . . . 8
|
| 89 | 82, 88 | eqtrd 2240 |
. . . . . . 7
|
| 90 | 52, 50 | eqtri 2228 |
. . . . . . . . . 10
|
| 91 | 90 | a1i 9 |
. . . . . . . . 9
|
| 92 | eqidd 2208 |
. . . . . . . . 9
| |
| 93 | 73, 62, 66, 91, 92 | offval2 6197 |
. . . . . . . 8
|
| 94 | 68 | mpteq2dva 4150 |
. . . . . . . 8
|
| 95 | 93, 94 | eqtrd 2240 |
. . . . . . 7
|
| 96 | 73, 74, 66, 89, 95 | offval2 6197 |
. . . . . 6
|
| 97 | 71, 96 | eqtr4d 2243 |
. . . . 5
|
| 98 | oveq1 5974 |
. . . . . . 7
| |
| 99 | 98 | oveq1d 5982 |
. . . . . 6
|
| 100 | 99 | eqcomd 2213 |
. . . . 5
|
| 101 | 97, 100 | sylan9eq 2260 |
. . . 4
|
| 102 | cnelprrecn 8096 |
. . . . . 6
| |
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | ssidd 3222 |
. . . . 5
| |
| 105 | 66 | fmpttd 5758 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | f1oi 5583 |
. . . . . 6
| |
| 108 | f1of 5544 |
. . . . . 6
| |
| 109 | 107, 108 | mp1i 10 |
. . . . 5
|
| 110 | simpr 110 |
. . . . . . 7
| |
| 111 | 110 | dmeqd 4899 |
. . . . . 6
|
| 112 | 78 | fmpttd 5758 |
. . . . . . . 8
|
| 113 | 112 | adantr 276 |
. . . . . . 7
|
| 114 | 113 | fdmd 5452 |
. . . . . 6
|
| 115 | 111, 114 | eqtrd 2240 |
. . . . 5
|
| 116 | 1ex 8102 |
. . . . . . . . 9
| |
| 117 | 116 | fconst 5493 |
. . . . . . . 8
|
| 118 | 52 | feq1i 5438 |
. . . . . . . 8
|
| 119 | 117, 118 | mpbir 146 |
. . . . . . 7
|
| 120 | 119 | fdmi 5453 |
. . . . . 6
|
| 121 | 120 | a1i 9 |
. . . . 5
|
| 122 | 103, 104, 106, 109, 115, 121 | dvimulf 15293 |
. . . 4
|
| 123 | 73, 66, 79, 92, 81 | offval2 6197 |
. . . . . . 7
|
| 124 | expp1 10728 |
. . . . . . . . 9
| |
| 125 | 63, 64, 124 | syl2anr 290 |
. . . . . . . 8
|
| 126 | 125 | mpteq2dva 4150 |
. . . . . . 7
|
| 127 | 123, 126 | eqtr4d 2243 |
. . . . . 6
|
| 128 | 127 | oveq2d 5983 |
. . . . 5
|
| 129 | 128 | adantr 276 |
. . . 4
|
| 130 | 101, 122, 129 | 3eqtr2rd 2247 |
. . 3
|
| 131 | 130 | ex 115 |
. 2
|
| 132 | 9, 18, 27, 36, 54, 131 | nnind 9087 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: dvexp2 15299 |
| Copyright terms: Public domain | W3C validator |