ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvexp Unicode version

Theorem dvexp 14214
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Distinct variable group:    x, N

Proof of Theorem dvexp
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5885 . . . . 5  |-  ( n  =  1  ->  (
x ^ n )  =  ( x ^
1 ) )
21mpteq2dv 4096 . . . 4  |-  ( n  =  1  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 1 ) ) )
32oveq2d 5893 . . 3  |-  ( n  =  1  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ 1 ) ) ) )
4 id 19 . . . . 5  |-  ( n  =  1  ->  n  =  1 )
5 oveq1 5884 . . . . . 6  |-  ( n  =  1  ->  (
n  -  1 )  =  ( 1  -  1 ) )
65oveq2d 5893 . . . . 5  |-  ( n  =  1  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( 1  -  1 ) ) )
74, 6oveq12d 5895 . . . 4  |-  ( n  =  1  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( 1  x.  ( x ^ (
1  -  1 ) ) ) )
87mpteq2dv 4096 . . 3  |-  ( n  =  1  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) ) )
93, 8eqeq12d 2192 . 2  |-  ( n  =  1  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ 1 ) ) )  =  ( x  e.  CC  |->  ( 1  x.  (
x ^ ( 1  -  1 ) ) ) ) ) )
10 oveq2 5885 . . . . 5  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
1110mpteq2dv 4096 . . . 4  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
1211oveq2d 5893 . . 3  |-  ( n  =  k  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ k
) ) ) )
13 id 19 . . . . 5  |-  ( n  =  k  ->  n  =  k )
14 oveq1 5884 . . . . . 6  |-  ( n  =  k  ->  (
n  -  1 )  =  ( k  - 
1 ) )
1514oveq2d 5893 . . . . 5  |-  ( n  =  k  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( k  -  1 ) ) )
1613, 15oveq12d 5895 . . . 4  |-  ( n  =  k  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( k  x.  ( x ^ (
k  -  1 ) ) ) )
1716mpteq2dv 4096 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) ) )
1812, 17eqeq12d 2192 . 2  |-  ( n  =  k  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ k
) ) )  =  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) ) ) )
19 oveq2 5885 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
2019mpteq2dv 4096 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
2120oveq2d 5893 . . 3  |-  ( n  =  ( k  +  1 )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) ) )
22 id 19 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
23 oveq1 5884 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (
n  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
2423oveq2d 5893 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( ( k  +  1 )  -  1 ) ) )
2522, 24oveq12d 5895 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( ( k  +  1 )  x.  ( x ^ (
( k  +  1 )  -  1 ) ) ) )
2625mpteq2dv 4096 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^
( ( k  +  1 )  -  1 ) ) ) ) )
2721, 26eqeq12d 2192 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
28 oveq2 5885 . . . . 5  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
2928mpteq2dv 4096 . . . 4  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
3029oveq2d 5893 . . 3  |-  ( n  =  N  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) ) )
31 id 19 . . . . 5  |-  ( n  =  N  ->  n  =  N )
32 oveq1 5884 . . . . . 6  |-  ( n  =  N  ->  (
n  -  1 )  =  ( N  - 
1 ) )
3332oveq2d 5893 . . . . 5  |-  ( n  =  N  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( N  -  1 ) ) )
3431, 33oveq12d 5895 . . . 4  |-  ( n  =  N  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( N  x.  ( x ^ ( N  -  1 ) ) ) )
3534mpteq2dv 4096 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^
( N  -  1 ) ) ) ) )
3630, 35eqeq12d 2192 . 2  |-  ( n  =  N  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) )  =  ( x  e.  CC  |->  ( N  x.  (
x ^ ( N  -  1 ) ) ) ) ) )
37 exp1 10528 . . . . . 6  |-  ( x  e.  CC  ->  (
x ^ 1 )  =  x )
3837mpteq2ia 4091 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ 1 ) )  =  ( x  e.  CC  |->  x )
39 mptresid 4963 . . . . 5  |-  ( x  e.  CC  |->  x )  =  (  _I  |`  CC )
4038, 39eqtri 2198 . . . 4  |-  ( x  e.  CC  |->  ( x ^ 1 ) )  =  (  _I  |`  CC )
4140oveq2i 5888 . . 3  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
1 ) ) )  =  ( CC  _D  (  _I  |`  CC ) )
42 1m1e0 8990 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4342oveq2i 5888 . . . . . . . . 9  |-  ( x ^ ( 1  -  1 ) )  =  ( x ^ 0 )
44 exp0 10526 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
4543, 44eqtrid 2222 . . . . . . . 8  |-  ( x  e.  CC  ->  (
x ^ ( 1  -  1 ) )  =  1 )
4645oveq2d 5893 . . . . . . 7  |-  ( x  e.  CC  ->  (
1  x.  ( x ^ ( 1  -  1 ) ) )  =  ( 1  x.  1 ) )
47 1t1e1 9073 . . . . . . 7  |-  ( 1  x.  1 )  =  1
4846, 47eqtrdi 2226 . . . . . 6  |-  ( x  e.  CC  ->  (
1  x.  ( x ^ ( 1  -  1 ) ) )  =  1 )
4948mpteq2ia 4091 . . . . 5  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( x  e.  CC  |->  1 )
50 fconstmpt 4675 . . . . 5  |-  ( CC 
X.  { 1 } )  =  ( x  e.  CC  |->  1 )
5149, 50eqtr4i 2201 . . . 4  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( CC  X.  { 1 } )
52 dvid 14201 . . . 4  |-  ( CC 
_D  (  _I  |`  CC ) )  =  ( CC 
X.  { 1 } )
5351, 52eqtr4i 2201 . . 3  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( CC  _D  (  _I  |`  CC ) )
5441, 53eqtr4i 2201 . 2  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
1 ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^ (
1  -  1 ) ) ) )
55 nncn 8929 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  CC )
5655adantr 276 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  k  e.  CC )
57 ax-1cn 7906 . . . . . . . . . . 11  |-  1  e.  CC
58 pncan 8165 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
5956, 57, 58sylancl 413 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
6059oveq2d 5893 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
( k  +  1 )  -  1 ) )  =  ( x ^ k ) )
6160oveq2d 5893 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( k  +  1 )  x.  ( x ^
k ) ) )
6257a1i 9 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  1  e.  CC )
63 id 19 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x  e.  CC )
64 nnnn0 9185 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN0 )
65 expcl 10540 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
6663, 64, 65syl2anr 290 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ k
)  e.  CC )
6756, 62, 66adddird 7985 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ k ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( 1  x.  ( x ^ k
) ) ) )
6866mulid2d 7978 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( 1  x.  (
x ^ k ) )  =  ( x ^ k ) )
6968oveq2d 5893 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ k
) )  +  ( 1  x.  ( x ^ k ) ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) )
7061, 67, 693eqtrd 2214 . . . . . . 7  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) )
7170mpteq2dva 4095 . . . . . 6  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) ) )
72 cnex 7937 . . . . . . . 8  |-  CC  e.  _V
7372a1i 9 . . . . . . 7  |-  ( k  e.  NN  ->  CC  e.  _V )
7456, 66mulcld 7980 . . . . . . 7  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ k ) )  e.  CC )
75 nnm1nn0 9219 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
76 expcl 10540 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( k  -  1 )  e.  NN0 )  ->  ( x ^ (
k  -  1 ) )  e.  CC )
7763, 75, 76syl2anr 290 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
k  -  1 ) )  e.  CC )
7856, 77mulcld 7980 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ ( k  -  1 ) ) )  e.  CC )
79 simpr 110 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  x  e.  CC )
80 eqidd 2178 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) ) )
8139eqcomi 2181 . . . . . . . . . 10  |-  (  _I  |`  CC )  =  ( x  e.  CC  |->  x )
8281a1i 9 . . . . . . . . 9  |-  ( k  e.  NN  ->  (  _I  |`  CC )  =  ( x  e.  CC  |->  x ) )
8373, 78, 79, 80, 82offval2 6100 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( ( k  x.  ( x ^ ( k  - 
1 ) ) )  x.  x ) ) )
8456, 77, 79mulassd 7983 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ (
k  -  1 ) ) )  x.  x
)  =  ( k  x.  ( ( x ^ ( k  - 
1 ) )  x.  x ) ) )
85 expm1t 10550 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  k  e.  NN )  ->  ( x ^ k
)  =  ( ( x ^ ( k  -  1 ) )  x.  x ) )
8685ancoms 268 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ k
)  =  ( ( x ^ ( k  -  1 ) )  x.  x ) )
8786oveq2d 5893 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ k ) )  =  ( k  x.  ( ( x ^ ( k  - 
1 ) )  x.  x ) ) )
8884, 87eqtr4d 2213 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ (
k  -  1 ) ) )  x.  x
)  =  ( k  x.  ( x ^
k ) ) )
8988mpteq2dva 4095 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  x.  (
x ^ ( k  -  1 ) ) )  x.  x ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
k ) ) ) )
9083, 89eqtrd 2210 . . . . . . 7  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
k ) ) ) )
9152, 50eqtri 2198 . . . . . . . . . 10  |-  ( CC 
_D  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  1 )
9291a1i 9 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( CC  _D  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  1 ) )
93 eqidd 2178 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ k ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9473, 62, 66, 92, 93offval2 6100 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( CC  _D  (  _I  |`  CC ) )  oF  x.  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^ k ) ) ) )
9568mpteq2dva 4095 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( 1  x.  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9694, 95eqtrd 2210 . . . . . . 7  |-  ( k  e.  NN  ->  (
( CC  _D  (  _I  |`  CC ) )  oF  x.  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9773, 74, 66, 90, 96offval2 6100 . . . . . 6  |-  ( k  e.  NN  ->  (
( ( x  e.  CC  |->  ( k  x.  ( x ^ (
k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k ) ) ) )  =  ( x  e.  CC  |->  ( ( k  x.  (
x ^ k ) )  +  ( x ^ k ) ) ) )
9871, 97eqtr4d 2213 . . . . 5  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( ( ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
99 oveq1 5884 . . . . . . 7  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( CC 
_D  ( x  e.  CC  |->  ( x ^
k ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) ) )
10099oveq1d 5892 . . . . . 6  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) )  =  ( ( ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
101100eqcomd 2183 . . . . 5  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) )  =  ( ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
10298, 101sylan9eq 2230 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( ( ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
103 cnelprrecn 7949 . . . . . 6  |-  CC  e.  { RR ,  CC }
104103a1i 9 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  CC  e.  { RR ,  CC } )
105 ssidd 3178 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  CC  C_  CC )
10666fmpttd 5673 . . . . . 6  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ k ) ) : CC --> CC )
107106adantr 276 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( x ^ k ) ) : CC --> CC )
108 f1oi 5501 . . . . . 6  |-  (  _I  |`  CC ) : CC -1-1-onto-> CC
109 f1of 5463 . . . . . 6  |-  ( (  _I  |`  CC ) : CC -1-1-onto-> CC  ->  (  _I  |`  CC ) : CC --> CC )
110108, 109mp1i 10 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (  _I  |`  CC ) : CC --> CC )
111 simpr 110 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ (
k  -  1 ) ) ) ) )
112111dmeqd 4831 . . . . . 6  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  dom  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) ) )
11378fmpttd 5673 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) : CC --> CC )
114113adantr 276 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) : CC --> CC )
115114fdmd 5374 . . . . . 6  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  =  CC )
116112, 115eqtrd 2210 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  CC )
117 1ex 7954 . . . . . . . . 9  |-  1  e.  _V
118117fconst 5413 . . . . . . . 8  |-  ( CC 
X.  { 1 } ) : CC --> { 1 }
11952feq1i 5360 . . . . . . . 8  |-  ( ( CC  _D  (  _I  |`  CC ) ) : CC --> { 1 }  <-> 
( CC  X.  {
1 } ) : CC --> { 1 } )
120118, 119mpbir 146 . . . . . . 7  |-  ( CC 
_D  (  _I  |`  CC ) ) : CC --> { 1 }
121120fdmi 5375 . . . . . 6  |-  dom  ( CC  _D  (  _I  |`  CC ) )  =  CC
122121a1i 9 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (  _I  |`  CC ) )  =  CC )
123104, 105, 107, 110, 116, 122dvimulf 14209 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( ( ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
12473, 66, 79, 93, 82offval2 6100 . . . . . . 7  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( x ^ k
) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
125 expp1 10529 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
12663, 64, 125syl2anr 290 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
127126mpteq2dva 4095 . . . . . . 7  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
128124, 127eqtr4d 2213 . . . . . 6  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( x ^ k
) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
129128oveq2d 5893 . . . . 5  |-  ( k  e.  NN  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( CC 
_D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) ) )
130129adantr 276 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( CC 
_D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) ) )
131102, 123, 1303eqtr2rd 2217 . . 3  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ (
( k  +  1 )  -  1 ) ) ) ) )
132131ex 115 . 2  |-  ( k  e.  NN  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
1339, 18, 27, 36, 54, 132nnind 8937 1  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594   {cpr 3595    |-> cmpt 4066    _I cid 4290    X. cxp 4626   dom cdm 4628    |` cres 4630   -->wf 5214   -1-1-onto->wf1o 5217  (class class class)co 5877    oFcof 6083   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    - cmin 8130   NNcn 8921   NN0cn0 9178   ^cexp 10521    _D cdv 14163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-pm 6653  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-rest 12695  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-ntr 13635  df-cn 13727  df-cnp 13728  df-tx 13792  df-cncf 14097  df-limced 14164  df-dvap 14165
This theorem is referenced by:  dvexp2  14215
  Copyright terms: Public domain W3C validator