| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvexp | Unicode version | ||
| Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvexp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6009 |
. . . . 5
| |
| 2 | 1 | mpteq2dv 4175 |
. . . 4
|
| 3 | 2 | oveq2d 6017 |
. . 3
|
| 4 | id 19 |
. . . . 5
| |
| 5 | oveq1 6008 |
. . . . . 6
| |
| 6 | 5 | oveq2d 6017 |
. . . . 5
|
| 7 | 4, 6 | oveq12d 6019 |
. . . 4
|
| 8 | 7 | mpteq2dv 4175 |
. . 3
|
| 9 | 3, 8 | eqeq12d 2244 |
. 2
|
| 10 | oveq2 6009 |
. . . . 5
| |
| 11 | 10 | mpteq2dv 4175 |
. . . 4
|
| 12 | 11 | oveq2d 6017 |
. . 3
|
| 13 | id 19 |
. . . . 5
| |
| 14 | oveq1 6008 |
. . . . . 6
| |
| 15 | 14 | oveq2d 6017 |
. . . . 5
|
| 16 | 13, 15 | oveq12d 6019 |
. . . 4
|
| 17 | 16 | mpteq2dv 4175 |
. . 3
|
| 18 | 12, 17 | eqeq12d 2244 |
. 2
|
| 19 | oveq2 6009 |
. . . . 5
| |
| 20 | 19 | mpteq2dv 4175 |
. . . 4
|
| 21 | 20 | oveq2d 6017 |
. . 3
|
| 22 | id 19 |
. . . . 5
| |
| 23 | oveq1 6008 |
. . . . . 6
| |
| 24 | 23 | oveq2d 6017 |
. . . . 5
|
| 25 | 22, 24 | oveq12d 6019 |
. . . 4
|
| 26 | 25 | mpteq2dv 4175 |
. . 3
|
| 27 | 21, 26 | eqeq12d 2244 |
. 2
|
| 28 | oveq2 6009 |
. . . . 5
| |
| 29 | 28 | mpteq2dv 4175 |
. . . 4
|
| 30 | 29 | oveq2d 6017 |
. . 3
|
| 31 | id 19 |
. . . . 5
| |
| 32 | oveq1 6008 |
. . . . . 6
| |
| 33 | 32 | oveq2d 6017 |
. . . . 5
|
| 34 | 31, 33 | oveq12d 6019 |
. . . 4
|
| 35 | 34 | mpteq2dv 4175 |
. . 3
|
| 36 | 30, 35 | eqeq12d 2244 |
. 2
|
| 37 | exp1 10767 |
. . . . . 6
| |
| 38 | 37 | mpteq2ia 4170 |
. . . . 5
|
| 39 | mptresid 5059 |
. . . . 5
| |
| 40 | 38, 39 | eqtr4i 2253 |
. . . 4
|
| 41 | 40 | oveq2i 6012 |
. . 3
|
| 42 | 1m1e0 9179 |
. . . . . . . . . 10
| |
| 43 | 42 | oveq2i 6012 |
. . . . . . . . 9
|
| 44 | exp0 10765 |
. . . . . . . . 9
| |
| 45 | 43, 44 | eqtrid 2274 |
. . . . . . . 8
|
| 46 | 45 | oveq2d 6017 |
. . . . . . 7
|
| 47 | 1t1e1 9263 |
. . . . . . 7
| |
| 48 | 46, 47 | eqtrdi 2278 |
. . . . . 6
|
| 49 | 48 | mpteq2ia 4170 |
. . . . 5
|
| 50 | fconstmpt 4766 |
. . . . 5
| |
| 51 | 49, 50 | eqtr4i 2253 |
. . . 4
|
| 52 | dvid 15369 |
. . . 4
| |
| 53 | 51, 52 | eqtr4i 2253 |
. . 3
|
| 54 | 41, 53 | eqtr4i 2253 |
. 2
|
| 55 | nncn 9118 |
. . . . . . . . . . . 12
| |
| 56 | 55 | adantr 276 |
. . . . . . . . . . 11
|
| 57 | ax-1cn 8092 |
. . . . . . . . . . 11
| |
| 58 | pncan 8352 |
. . . . . . . . . . 11
| |
| 59 | 56, 57, 58 | sylancl 413 |
. . . . . . . . . 10
|
| 60 | 59 | oveq2d 6017 |
. . . . . . . . 9
|
| 61 | 60 | oveq2d 6017 |
. . . . . . . 8
|
| 62 | 57 | a1i 9 |
. . . . . . . . 9
|
| 63 | id 19 |
. . . . . . . . . 10
| |
| 64 | nnnn0 9376 |
. . . . . . . . . 10
| |
| 65 | expcl 10779 |
. . . . . . . . . 10
| |
| 66 | 63, 64, 65 | syl2anr 290 |
. . . . . . . . 9
|
| 67 | 56, 62, 66 | adddird 8172 |
. . . . . . . 8
|
| 68 | 66 | mulid2d 8165 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 6017 |
. . . . . . . 8
|
| 70 | 61, 67, 69 | 3eqtrd 2266 |
. . . . . . 7
|
| 71 | 70 | mpteq2dva 4174 |
. . . . . 6
|
| 72 | cnex 8123 |
. . . . . . . 8
| |
| 73 | 72 | a1i 9 |
. . . . . . 7
|
| 74 | 56, 66 | mulcld 8167 |
. . . . . . 7
|
| 75 | nnm1nn0 9410 |
. . . . . . . . . . 11
| |
| 76 | expcl 10779 |
. . . . . . . . . . 11
| |
| 77 | 63, 75, 76 | syl2anr 290 |
. . . . . . . . . 10
|
| 78 | 56, 77 | mulcld 8167 |
. . . . . . . . 9
|
| 79 | simpr 110 |
. . . . . . . . 9
| |
| 80 | eqidd 2230 |
. . . . . . . . 9
| |
| 81 | 39 | a1i 9 |
. . . . . . . . 9
|
| 82 | 73, 78, 79, 80, 81 | offval2 6234 |
. . . . . . . 8
|
| 83 | 56, 77, 79 | mulassd 8170 |
. . . . . . . . . 10
|
| 84 | expm1t 10789 |
. . . . . . . . . . . 12
| |
| 85 | 84 | ancoms 268 |
. . . . . . . . . . 11
|
| 86 | 85 | oveq2d 6017 |
. . . . . . . . . 10
|
| 87 | 83, 86 | eqtr4d 2265 |
. . . . . . . . 9
|
| 88 | 87 | mpteq2dva 4174 |
. . . . . . . 8
|
| 89 | 82, 88 | eqtrd 2262 |
. . . . . . 7
|
| 90 | 52, 50 | eqtri 2250 |
. . . . . . . . . 10
|
| 91 | 90 | a1i 9 |
. . . . . . . . 9
|
| 92 | eqidd 2230 |
. . . . . . . . 9
| |
| 93 | 73, 62, 66, 91, 92 | offval2 6234 |
. . . . . . . 8
|
| 94 | 68 | mpteq2dva 4174 |
. . . . . . . 8
|
| 95 | 93, 94 | eqtrd 2262 |
. . . . . . 7
|
| 96 | 73, 74, 66, 89, 95 | offval2 6234 |
. . . . . 6
|
| 97 | 71, 96 | eqtr4d 2265 |
. . . . 5
|
| 98 | oveq1 6008 |
. . . . . . 7
| |
| 99 | 98 | oveq1d 6016 |
. . . . . 6
|
| 100 | 99 | eqcomd 2235 |
. . . . 5
|
| 101 | 97, 100 | sylan9eq 2282 |
. . . 4
|
| 102 | cnelprrecn 8135 |
. . . . . 6
| |
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | ssidd 3245 |
. . . . 5
| |
| 105 | 66 | fmpttd 5790 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | f1oi 5611 |
. . . . . 6
| |
| 108 | f1of 5572 |
. . . . . 6
| |
| 109 | 107, 108 | mp1i 10 |
. . . . 5
|
| 110 | simpr 110 |
. . . . . . 7
| |
| 111 | 110 | dmeqd 4925 |
. . . . . 6
|
| 112 | 78 | fmpttd 5790 |
. . . . . . . 8
|
| 113 | 112 | adantr 276 |
. . . . . . 7
|
| 114 | 113 | fdmd 5480 |
. . . . . 6
|
| 115 | 111, 114 | eqtrd 2262 |
. . . . 5
|
| 116 | 1ex 8141 |
. . . . . . . . 9
| |
| 117 | 116 | fconst 5521 |
. . . . . . . 8
|
| 118 | 52 | feq1i 5466 |
. . . . . . . 8
|
| 119 | 117, 118 | mpbir 146 |
. . . . . . 7
|
| 120 | 119 | fdmi 5481 |
. . . . . 6
|
| 121 | 120 | a1i 9 |
. . . . 5
|
| 122 | 103, 104, 106, 109, 115, 121 | dvimulf 15380 |
. . . 4
|
| 123 | 73, 66, 79, 92, 81 | offval2 6234 |
. . . . . . 7
|
| 124 | expp1 10768 |
. . . . . . . . 9
| |
| 125 | 63, 64, 124 | syl2anr 290 |
. . . . . . . 8
|
| 126 | 125 | mpteq2dva 4174 |
. . . . . . 7
|
| 127 | 123, 126 | eqtr4d 2265 |
. . . . . 6
|
| 128 | 127 | oveq2d 6017 |
. . . . 5
|
| 129 | 128 | adantr 276 |
. . . 4
|
| 130 | 101, 122, 129 | 3eqtr2rd 2269 |
. . 3
|
| 131 | 130 | ex 115 |
. 2
|
| 132 | 9, 18, 27, 36, 54, 131 | nnind 9126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 ax-addf 8121 ax-mulf 8122 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-of 6218 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-map 6797 df-pm 6798 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-xneg 9968 df-xadd 9969 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-rest 13274 df-topgen 13293 df-psmet 14507 df-xmet 14508 df-met 14509 df-bl 14510 df-mopn 14511 df-top 14672 df-topon 14685 df-bases 14717 df-ntr 14770 df-cn 14862 df-cnp 14863 df-tx 14927 df-cncf 15245 df-limced 15330 df-dvap 15331 |
| This theorem is referenced by: dvexp2 15386 |
| Copyright terms: Public domain | W3C validator |