| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvexp | Unicode version | ||
| Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| dvexp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 5930 | 
. . . . 5
 | |
| 2 | 1 | mpteq2dv 4124 | 
. . . 4
 | 
| 3 | 2 | oveq2d 5938 | 
. . 3
 | 
| 4 | id 19 | 
. . . . 5
 | |
| 5 | oveq1 5929 | 
. . . . . 6
 | |
| 6 | 5 | oveq2d 5938 | 
. . . . 5
 | 
| 7 | 4, 6 | oveq12d 5940 | 
. . . 4
 | 
| 8 | 7 | mpteq2dv 4124 | 
. . 3
 | 
| 9 | 3, 8 | eqeq12d 2211 | 
. 2
 | 
| 10 | oveq2 5930 | 
. . . . 5
 | |
| 11 | 10 | mpteq2dv 4124 | 
. . . 4
 | 
| 12 | 11 | oveq2d 5938 | 
. . 3
 | 
| 13 | id 19 | 
. . . . 5
 | |
| 14 | oveq1 5929 | 
. . . . . 6
 | |
| 15 | 14 | oveq2d 5938 | 
. . . . 5
 | 
| 16 | 13, 15 | oveq12d 5940 | 
. . . 4
 | 
| 17 | 16 | mpteq2dv 4124 | 
. . 3
 | 
| 18 | 12, 17 | eqeq12d 2211 | 
. 2
 | 
| 19 | oveq2 5930 | 
. . . . 5
 | |
| 20 | 19 | mpteq2dv 4124 | 
. . . 4
 | 
| 21 | 20 | oveq2d 5938 | 
. . 3
 | 
| 22 | id 19 | 
. . . . 5
 | |
| 23 | oveq1 5929 | 
. . . . . 6
 | |
| 24 | 23 | oveq2d 5938 | 
. . . . 5
 | 
| 25 | 22, 24 | oveq12d 5940 | 
. . . 4
 | 
| 26 | 25 | mpteq2dv 4124 | 
. . 3
 | 
| 27 | 21, 26 | eqeq12d 2211 | 
. 2
 | 
| 28 | oveq2 5930 | 
. . . . 5
 | |
| 29 | 28 | mpteq2dv 4124 | 
. . . 4
 | 
| 30 | 29 | oveq2d 5938 | 
. . 3
 | 
| 31 | id 19 | 
. . . . 5
 | |
| 32 | oveq1 5929 | 
. . . . . 6
 | |
| 33 | 32 | oveq2d 5938 | 
. . . . 5
 | 
| 34 | 31, 33 | oveq12d 5940 | 
. . . 4
 | 
| 35 | 34 | mpteq2dv 4124 | 
. . 3
 | 
| 36 | 30, 35 | eqeq12d 2211 | 
. 2
 | 
| 37 | exp1 10637 | 
. . . . . 6
 | |
| 38 | 37 | mpteq2ia 4119 | 
. . . . 5
 | 
| 39 | mptresid 5000 | 
. . . . 5
 | |
| 40 | 38, 39 | eqtr4i 2220 | 
. . . 4
 | 
| 41 | 40 | oveq2i 5933 | 
. . 3
 | 
| 42 | 1m1e0 9059 | 
. . . . . . . . . 10
 | |
| 43 | 42 | oveq2i 5933 | 
. . . . . . . . 9
 | 
| 44 | exp0 10635 | 
. . . . . . . . 9
 | |
| 45 | 43, 44 | eqtrid 2241 | 
. . . . . . . 8
 | 
| 46 | 45 | oveq2d 5938 | 
. . . . . . 7
 | 
| 47 | 1t1e1 9143 | 
. . . . . . 7
 | |
| 48 | 46, 47 | eqtrdi 2245 | 
. . . . . 6
 | 
| 49 | 48 | mpteq2ia 4119 | 
. . . . 5
 | 
| 50 | fconstmpt 4710 | 
. . . . 5
 | |
| 51 | 49, 50 | eqtr4i 2220 | 
. . . 4
 | 
| 52 | dvid 14931 | 
. . . 4
 | |
| 53 | 51, 52 | eqtr4i 2220 | 
. . 3
 | 
| 54 | 41, 53 | eqtr4i 2220 | 
. 2
 | 
| 55 | nncn 8998 | 
. . . . . . . . . . . 12
 | |
| 56 | 55 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 57 | ax-1cn 7972 | 
. . . . . . . . . . 11
 | |
| 58 | pncan 8232 | 
. . . . . . . . . . 11
 | |
| 59 | 56, 57, 58 | sylancl 413 | 
. . . . . . . . . 10
 | 
| 60 | 59 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 61 | 60 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 62 | 57 | a1i 9 | 
. . . . . . . . 9
 | 
| 63 | id 19 | 
. . . . . . . . . 10
 | |
| 64 | nnnn0 9256 | 
. . . . . . . . . 10
 | |
| 65 | expcl 10649 | 
. . . . . . . . . 10
 | |
| 66 | 63, 64, 65 | syl2anr 290 | 
. . . . . . . . 9
 | 
| 67 | 56, 62, 66 | adddird 8052 | 
. . . . . . . 8
 | 
| 68 | 66 | mulid2d 8045 | 
. . . . . . . . 9
 | 
| 69 | 68 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 70 | 61, 67, 69 | 3eqtrd 2233 | 
. . . . . . 7
 | 
| 71 | 70 | mpteq2dva 4123 | 
. . . . . 6
 | 
| 72 | cnex 8003 | 
. . . . . . . 8
 | |
| 73 | 72 | a1i 9 | 
. . . . . . 7
 | 
| 74 | 56, 66 | mulcld 8047 | 
. . . . . . 7
 | 
| 75 | nnm1nn0 9290 | 
. . . . . . . . . . 11
 | |
| 76 | expcl 10649 | 
. . . . . . . . . . 11
 | |
| 77 | 63, 75, 76 | syl2anr 290 | 
. . . . . . . . . 10
 | 
| 78 | 56, 77 | mulcld 8047 | 
. . . . . . . . 9
 | 
| 79 | simpr 110 | 
. . . . . . . . 9
 | |
| 80 | eqidd 2197 | 
. . . . . . . . 9
 | |
| 81 | 39 | a1i 9 | 
. . . . . . . . 9
 | 
| 82 | 73, 78, 79, 80, 81 | offval2 6151 | 
. . . . . . . 8
 | 
| 83 | 56, 77, 79 | mulassd 8050 | 
. . . . . . . . . 10
 | 
| 84 | expm1t 10659 | 
. . . . . . . . . . . 12
 | |
| 85 | 84 | ancoms 268 | 
. . . . . . . . . . 11
 | 
| 86 | 85 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 87 | 83, 86 | eqtr4d 2232 | 
. . . . . . . . 9
 | 
| 88 | 87 | mpteq2dva 4123 | 
. . . . . . . 8
 | 
| 89 | 82, 88 | eqtrd 2229 | 
. . . . . . 7
 | 
| 90 | 52, 50 | eqtri 2217 | 
. . . . . . . . . 10
 | 
| 91 | 90 | a1i 9 | 
. . . . . . . . 9
 | 
| 92 | eqidd 2197 | 
. . . . . . . . 9
 | |
| 93 | 73, 62, 66, 91, 92 | offval2 6151 | 
. . . . . . . 8
 | 
| 94 | 68 | mpteq2dva 4123 | 
. . . . . . . 8
 | 
| 95 | 93, 94 | eqtrd 2229 | 
. . . . . . 7
 | 
| 96 | 73, 74, 66, 89, 95 | offval2 6151 | 
. . . . . 6
 | 
| 97 | 71, 96 | eqtr4d 2232 | 
. . . . 5
 | 
| 98 | oveq1 5929 | 
. . . . . . 7
 | |
| 99 | 98 | oveq1d 5937 | 
. . . . . 6
 | 
| 100 | 99 | eqcomd 2202 | 
. . . . 5
 | 
| 101 | 97, 100 | sylan9eq 2249 | 
. . . 4
 | 
| 102 | cnelprrecn 8015 | 
. . . . . 6
 | |
| 103 | 102 | a1i 9 | 
. . . . 5
 | 
| 104 | ssidd 3204 | 
. . . . 5
 | |
| 105 | 66 | fmpttd 5717 | 
. . . . . 6
 | 
| 106 | 105 | adantr 276 | 
. . . . 5
 | 
| 107 | f1oi 5542 | 
. . . . . 6
 | |
| 108 | f1of 5504 | 
. . . . . 6
 | |
| 109 | 107, 108 | mp1i 10 | 
. . . . 5
 | 
| 110 | simpr 110 | 
. . . . . . 7
 | |
| 111 | 110 | dmeqd 4868 | 
. . . . . 6
 | 
| 112 | 78 | fmpttd 5717 | 
. . . . . . . 8
 | 
| 113 | 112 | adantr 276 | 
. . . . . . 7
 | 
| 114 | 113 | fdmd 5414 | 
. . . . . 6
 | 
| 115 | 111, 114 | eqtrd 2229 | 
. . . . 5
 | 
| 116 | 1ex 8021 | 
. . . . . . . . 9
 | |
| 117 | 116 | fconst 5453 | 
. . . . . . . 8
 | 
| 118 | 52 | feq1i 5400 | 
. . . . . . . 8
 | 
| 119 | 117, 118 | mpbir 146 | 
. . . . . . 7
 | 
| 120 | 119 | fdmi 5415 | 
. . . . . 6
 | 
| 121 | 120 | a1i 9 | 
. . . . 5
 | 
| 122 | 103, 104, 106, 109, 115, 121 | dvimulf 14942 | 
. . . 4
 | 
| 123 | 73, 66, 79, 92, 81 | offval2 6151 | 
. . . . . . 7
 | 
| 124 | expp1 10638 | 
. . . . . . . . 9
 | |
| 125 | 63, 64, 124 | syl2anr 290 | 
. . . . . . . 8
 | 
| 126 | 125 | mpteq2dva 4123 | 
. . . . . . 7
 | 
| 127 | 123, 126 | eqtr4d 2232 | 
. . . . . 6
 | 
| 128 | 127 | oveq2d 5938 | 
. . . . 5
 | 
| 129 | 128 | adantr 276 | 
. . . 4
 | 
| 130 | 101, 122, 129 | 3eqtr2rd 2236 | 
. . 3
 | 
| 131 | 130 | ex 115 | 
. 2
 | 
| 132 | 9, 18, 27, 36, 54, 131 | nnind 9006 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pm 6710 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: dvexp2 14948 | 
| Copyright terms: Public domain | W3C validator |