ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvexp Unicode version

Theorem dvexp 15183
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Distinct variable group:    x, N

Proof of Theorem dvexp
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5952 . . . . 5  |-  ( n  =  1  ->  (
x ^ n )  =  ( x ^
1 ) )
21mpteq2dv 4135 . . . 4  |-  ( n  =  1  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ 1 ) ) )
32oveq2d 5960 . . 3  |-  ( n  =  1  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ 1 ) ) ) )
4 id 19 . . . . 5  |-  ( n  =  1  ->  n  =  1 )
5 oveq1 5951 . . . . . 6  |-  ( n  =  1  ->  (
n  -  1 )  =  ( 1  -  1 ) )
65oveq2d 5960 . . . . 5  |-  ( n  =  1  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( 1  -  1 ) ) )
74, 6oveq12d 5962 . . . 4  |-  ( n  =  1  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( 1  x.  ( x ^ (
1  -  1 ) ) ) )
87mpteq2dv 4135 . . 3  |-  ( n  =  1  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) ) )
93, 8eqeq12d 2220 . 2  |-  ( n  =  1  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ 1 ) ) )  =  ( x  e.  CC  |->  ( 1  x.  (
x ^ ( 1  -  1 ) ) ) ) ) )
10 oveq2 5952 . . . . 5  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
1110mpteq2dv 4135 . . . 4  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
1211oveq2d 5960 . . 3  |-  ( n  =  k  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ k
) ) ) )
13 id 19 . . . . 5  |-  ( n  =  k  ->  n  =  k )
14 oveq1 5951 . . . . . 6  |-  ( n  =  k  ->  (
n  -  1 )  =  ( k  - 
1 ) )
1514oveq2d 5960 . . . . 5  |-  ( n  =  k  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( k  -  1 ) ) )
1613, 15oveq12d 5962 . . . 4  |-  ( n  =  k  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( k  x.  ( x ^ (
k  -  1 ) ) ) )
1716mpteq2dv 4135 . . 3  |-  ( n  =  k  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) ) )
1812, 17eqeq12d 2220 . 2  |-  ( n  =  k  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ k
) ) )  =  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) ) ) )
19 oveq2 5952 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
x ^ n )  =  ( x ^
( k  +  1 ) ) )
2019mpteq2dv 4135 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
2120oveq2d 5960 . . 3  |-  ( n  =  ( k  +  1 )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) ) )
22 id 19 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
23 oveq1 5951 . . . . . 6  |-  ( n  =  ( k  +  1 )  ->  (
n  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
2423oveq2d 5960 . . . . 5  |-  ( n  =  ( k  +  1 )  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( ( k  +  1 )  -  1 ) ) )
2522, 24oveq12d 5962 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( ( k  +  1 )  x.  ( x ^ (
( k  +  1 )  -  1 ) ) ) )
2625mpteq2dv 4135 . . 3  |-  ( n  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^
( ( k  +  1 )  -  1 ) ) ) ) )
2721, 26eqeq12d 2220 . 2  |-  ( n  =  ( k  +  1 )  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
28 oveq2 5952 . . . . 5  |-  ( n  =  N  ->  (
x ^ n )  =  ( x ^ N ) )
2928mpteq2dv 4135 . . . 4  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( x ^ n ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
3029oveq2d 5960 . . 3  |-  ( n  =  N  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
n ) ) )  =  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) ) )
31 id 19 . . . . 5  |-  ( n  =  N  ->  n  =  N )
32 oveq1 5951 . . . . . 6  |-  ( n  =  N  ->  (
n  -  1 )  =  ( N  - 
1 ) )
3332oveq2d 5960 . . . . 5  |-  ( n  =  N  ->  (
x ^ ( n  -  1 ) )  =  ( x ^
( N  -  1 ) ) )
3431, 33oveq12d 5962 . . . 4  |-  ( n  =  N  ->  (
n  x.  ( x ^ ( n  - 
1 ) ) )  =  ( N  x.  ( x ^ ( N  -  1 ) ) ) )
3534mpteq2dv 4135 . . 3  |-  ( n  =  N  ->  (
x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^
( N  -  1 ) ) ) ) )
3630, 35eqeq12d 2220 . 2  |-  ( n  =  N  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ n ) ) )  =  ( x  e.  CC  |->  ( n  x.  ( x ^ ( n  - 
1 ) ) ) )  <->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) )  =  ( x  e.  CC  |->  ( N  x.  (
x ^ ( N  -  1 ) ) ) ) ) )
37 exp1 10690 . . . . . 6  |-  ( x  e.  CC  ->  (
x ^ 1 )  =  x )
3837mpteq2ia 4130 . . . . 5  |-  ( x  e.  CC  |->  ( x ^ 1 ) )  =  ( x  e.  CC  |->  x )
39 mptresid 5013 . . . . 5  |-  (  _I  |`  CC )  =  ( x  e.  CC  |->  x )
4038, 39eqtr4i 2229 . . . 4  |-  ( x  e.  CC  |->  ( x ^ 1 ) )  =  (  _I  |`  CC )
4140oveq2i 5955 . . 3  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
1 ) ) )  =  ( CC  _D  (  _I  |`  CC ) )
42 1m1e0 9105 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4342oveq2i 5955 . . . . . . . . 9  |-  ( x ^ ( 1  -  1 ) )  =  ( x ^ 0 )
44 exp0 10688 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
4543, 44eqtrid 2250 . . . . . . . 8  |-  ( x  e.  CC  ->  (
x ^ ( 1  -  1 ) )  =  1 )
4645oveq2d 5960 . . . . . . 7  |-  ( x  e.  CC  ->  (
1  x.  ( x ^ ( 1  -  1 ) ) )  =  ( 1  x.  1 ) )
47 1t1e1 9189 . . . . . . 7  |-  ( 1  x.  1 )  =  1
4846, 47eqtrdi 2254 . . . . . 6  |-  ( x  e.  CC  ->  (
1  x.  ( x ^ ( 1  -  1 ) ) )  =  1 )
4948mpteq2ia 4130 . . . . 5  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( x  e.  CC  |->  1 )
50 fconstmpt 4722 . . . . 5  |-  ( CC 
X.  { 1 } )  =  ( x  e.  CC  |->  1 )
5149, 50eqtr4i 2229 . . . 4  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( CC  X.  { 1 } )
52 dvid 15167 . . . 4  |-  ( CC 
_D  (  _I  |`  CC ) )  =  ( CC 
X.  { 1 } )
5351, 52eqtr4i 2229 . . 3  |-  ( x  e.  CC  |->  ( 1  x.  ( x ^
( 1  -  1 ) ) ) )  =  ( CC  _D  (  _I  |`  CC ) )
5441, 53eqtr4i 2229 . 2  |-  ( CC 
_D  ( x  e.  CC  |->  ( x ^
1 ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^ (
1  -  1 ) ) ) )
55 nncn 9044 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  CC )
5655adantr 276 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  k  e.  CC )
57 ax-1cn 8018 . . . . . . . . . . 11  |-  1  e.  CC
58 pncan 8278 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
5956, 57, 58sylancl 413 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
6059oveq2d 5960 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
( k  +  1 )  -  1 ) )  =  ( x ^ k ) )
6160oveq2d 5960 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( k  +  1 )  x.  ( x ^
k ) ) )
6257a1i 9 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  1  e.  CC )
63 id 19 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x  e.  CC )
64 nnnn0 9302 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN0 )
65 expcl 10702 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ k
)  e.  CC )
6663, 64, 65syl2anr 290 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ k
)  e.  CC )
6756, 62, 66adddird 8098 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ k ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( 1  x.  ( x ^ k
) ) ) )
6866mulid2d 8091 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( 1  x.  (
x ^ k ) )  =  ( x ^ k ) )
6968oveq2d 5960 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ k
) )  +  ( 1  x.  ( x ^ k ) ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) )
7061, 67, 693eqtrd 2242 . . . . . . 7  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) )
7170mpteq2dva 4134 . . . . . 6  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  x.  ( x ^ k ) )  +  ( x ^
k ) ) ) )
72 cnex 8049 . . . . . . . 8  |-  CC  e.  _V
7372a1i 9 . . . . . . 7  |-  ( k  e.  NN  ->  CC  e.  _V )
7456, 66mulcld 8093 . . . . . . 7  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ k ) )  e.  CC )
75 nnm1nn0 9336 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
76 expcl 10702 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( k  -  1 )  e.  NN0 )  ->  ( x ^ (
k  -  1 ) )  e.  CC )
7763, 75, 76syl2anr 290 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
k  -  1 ) )  e.  CC )
7856, 77mulcld 8093 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ ( k  -  1 ) ) )  e.  CC )
79 simpr 110 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  x  e.  CC )
80 eqidd 2206 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) ) )
8139a1i 9 . . . . . . . . 9  |-  ( k  e.  NN  ->  (  _I  |`  CC )  =  ( x  e.  CC  |->  x ) )
8273, 78, 79, 80, 81offval2 6174 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( ( k  x.  ( x ^ ( k  - 
1 ) ) )  x.  x ) ) )
8356, 77, 79mulassd 8096 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ (
k  -  1 ) ) )  x.  x
)  =  ( k  x.  ( ( x ^ ( k  - 
1 ) )  x.  x ) ) )
84 expm1t 10712 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  k  e.  NN )  ->  ( x ^ k
)  =  ( ( x ^ ( k  -  1 ) )  x.  x ) )
8584ancoms 268 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ k
)  =  ( ( x ^ ( k  -  1 ) )  x.  x ) )
8685oveq2d 5960 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( k  x.  (
x ^ k ) )  =  ( k  x.  ( ( x ^ ( k  - 
1 ) )  x.  x ) ) )
8783, 86eqtr4d 2241 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( ( k  x.  ( x ^ (
k  -  1 ) ) )  x.  x
)  =  ( k  x.  ( x ^
k ) ) )
8887mpteq2dva 4134 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  x.  (
x ^ ( k  -  1 ) ) )  x.  x ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
k ) ) ) )
8982, 88eqtrd 2238 . . . . . . 7  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
k ) ) ) )
9052, 50eqtri 2226 . . . . . . . . . 10  |-  ( CC 
_D  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  1 )
9190a1i 9 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( CC  _D  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  1 ) )
92 eqidd 2206 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ k ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9373, 62, 66, 91, 92offval2 6174 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( CC  _D  (  _I  |`  CC ) )  oF  x.  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( 1  x.  ( x ^ k ) ) ) )
9468mpteq2dva 4134 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( 1  x.  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9593, 94eqtrd 2238 . . . . . . 7  |-  ( k  e.  NN  ->  (
( CC  _D  (  _I  |`  CC ) )  oF  x.  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
9673, 74, 66, 89, 95offval2 6174 . . . . . 6  |-  ( k  e.  NN  ->  (
( ( x  e.  CC  |->  ( k  x.  ( x ^ (
k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k ) ) ) )  =  ( x  e.  CC  |->  ( ( k  x.  (
x ^ k ) )  +  ( x ^ k ) ) ) )
9771, 96eqtr4d 2241 . . . . 5  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( ( ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
98 oveq1 5951 . . . . . . 7  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( CC 
_D  ( x  e.  CC  |->  ( x ^
k ) ) )  oF  x.  (  _I  |`  CC ) )  =  ( ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  oF  x.  (  _I  |`  CC ) ) )
9998oveq1d 5959 . . . . . 6  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) )  =  ( ( ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
10099eqcomd 2211 . . . . 5  |-  ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^
( k  -  1 ) ) ) )  ->  ( ( ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) )  =  ( ( ( CC  _D  ( x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
10197, 100sylan9eq 2258 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ ( ( k  +  1 )  - 
1 ) ) ) )  =  ( ( ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
102 cnelprrecn 8061 . . . . . 6  |-  CC  e.  { RR ,  CC }
103102a1i 9 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  CC  e.  { RR ,  CC } )
104 ssidd 3214 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  CC  C_  CC )
10566fmpttd 5735 . . . . . 6  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ k ) ) : CC --> CC )
106105adantr 276 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( x ^ k ) ) : CC --> CC )
107 f1oi 5560 . . . . . 6  |-  (  _I  |`  CC ) : CC -1-1-onto-> CC
108 f1of 5522 . . . . . 6  |-  ( (  _I  |`  CC ) : CC -1-1-onto-> CC  ->  (  _I  |`  CC ) : CC --> CC )
109107, 108mp1i 10 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (  _I  |`  CC ) : CC --> CC )
110 simpr 110 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ (
k  -  1 ) ) ) ) )
111110dmeqd 4880 . . . . . 6  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  dom  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) ) )
11278fmpttd 5735 . . . . . . . 8  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) : CC --> CC )
113112adantr 276 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  (
x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) : CC --> CC )
114113fdmd 5432 . . . . . 6  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( x  e.  CC  |->  ( k  x.  (
x ^ ( k  -  1 ) ) ) )  =  CC )
115111, 114eqtrd 2238 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  CC )
116 1ex 8067 . . . . . . . . 9  |-  1  e.  _V
117116fconst 5471 . . . . . . . 8  |-  ( CC 
X.  { 1 } ) : CC --> { 1 }
11852feq1i 5418 . . . . . . . 8  |-  ( ( CC  _D  (  _I  |`  CC ) ) : CC --> { 1 }  <-> 
( CC  X.  {
1 } ) : CC --> { 1 } )
119117, 118mpbir 146 . . . . . . 7  |-  ( CC 
_D  (  _I  |`  CC ) ) : CC --> { 1 }
120119fdmi 5433 . . . . . 6  |-  dom  ( CC  _D  (  _I  |`  CC ) )  =  CC
121120a1i 9 . . . . 5  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  dom  ( CC  _D  (  _I  |`  CC ) )  =  CC )
122103, 104, 106, 109, 115, 121dvimulf 15178 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( ( ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  oF  x.  (  _I  |`  CC ) )  oF  +  ( ( CC  _D  (  _I  |`  CC ) )  oF  x.  ( x  e.  CC  |->  ( x ^ k
) ) ) ) )
12373, 66, 79, 92, 81offval2 6174 . . . . . . 7  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( x ^ k
) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
124 expp1 10691 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
12563, 64, 124syl2anr 290 . . . . . . . 8  |-  ( ( k  e.  NN  /\  x  e.  CC )  ->  ( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
126125mpteq2dva 4134 . . . . . . 7  |-  ( k  e.  NN  ->  (
x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
127123, 126eqtr4d 2241 . . . . . 6  |-  ( k  e.  NN  ->  (
( x  e.  CC  |->  ( x ^ k
) )  oF  x.  (  _I  |`  CC ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
128127oveq2d 5960 . . . . 5  |-  ( k  e.  NN  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( CC 
_D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) ) )
129128adantr 276 . . . 4  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( ( x  e.  CC  |->  ( x ^ k ) )  oF  x.  (  _I  |`  CC ) ) )  =  ( CC 
_D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) ) )
130101, 122, 1293eqtr2rd 2245 . . 3  |-  ( ( k  e.  NN  /\  ( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  ( x ^ (
( k  +  1 )  -  1 ) ) ) ) )
131130ex 115 . 2  |-  ( k  e.  NN  ->  (
( CC  _D  (
x  e.  CC  |->  ( x ^ k ) ) )  =  ( x  e.  CC  |->  ( k  x.  ( x ^ ( k  - 
1 ) ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( k  +  1 )  x.  (
x ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
1329, 18, 27, 36, 54, 131nnind 9052 1  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633   {cpr 3634    |-> cmpt 4105    _I cid 4335    X. cxp 4673   dom cdm 4675    |` cres 4677   -->wf 5267   -1-1-onto->wf1o 5270  (class class class)co 5944    oFcof 6156   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    - cmin 8243   NNcn 9036   NN0cn0 9295   ^cexp 10683    _D cdv 15127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-pm 6738  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  dvexp2  15184
  Copyright terms: Public domain W3C validator