ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgqioo Unicode version

Theorem tgqioo 15229
Description: The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
tgqioo.1  |-  Q  =  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
Assertion
Ref Expression
tgqioo  |-  ( topGen ` 
ran  (,) )  =  Q

Proof of Theorem tgqioo
Dummy variables  v  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgqioo.1 . 2  |-  Q  =  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
2 iooex 10103 . . . 4  |-  (,)  e.  _V
32imaex 5083 . . 3  |-  ( (,) " ( QQ  X.  QQ ) )  e.  _V
4 imassrn 5079 . . 3  |-  ( (,) " ( QQ  X.  QQ ) )  C_  ran  (,)
5 ioof 10167 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
6 ffn 5473 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
75, 6ax-mp 5 . . . . 5  |-  (,)  Fn  ( RR*  X.  RR* )
8 simpll 527 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  x  e.  RR* )
9 elioo1 10107 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
z  e.  ( x (,) y )  <->  ( z  e.  RR*  /\  x  < 
z  /\  z  <  y ) ) )
109biimpa 296 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( z  e.  RR*  /\  x  < 
z  /\  z  <  y ) )
1110simp1d 1033 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  z  e.  RR* )
1210simp2d 1034 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  x  <  z )
13 qbtwnxr 10477 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  z  e.  RR*  /\  x  < 
z )  ->  E. u  e.  QQ  ( x  < 
u  /\  u  <  z ) )
148, 11, 12, 13syl3anc 1271 . . . . . . . . 9  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  E. u  e.  QQ  ( x  < 
u  /\  u  <  z ) )
15 simplr 528 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  y  e.  RR* )
1610simp3d 1035 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  z  <  y )
17 qbtwnxr 10477 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  y  e.  RR*  /\  z  < 
y )  ->  E. v  e.  QQ  ( z  < 
v  /\  v  <  y ) )
1811, 15, 16, 17syl3anc 1271 . . . . . . . . 9  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  E. v  e.  QQ  ( z  < 
v  /\  v  <  y ) )
19 reeanv 2701 . . . . . . . . . 10  |-  ( E. u  e.  QQ  E. v  e.  QQ  (
( x  <  u  /\  u  <  z )  /\  ( z  < 
v  /\  v  <  y ) )  <->  ( E. u  e.  QQ  (
x  <  u  /\  u  <  z )  /\  E. v  e.  QQ  (
z  <  v  /\  v  <  y ) ) )
20 df-ov 6004 . . . . . . . . . . . . . 14  |-  ( u (,) v )  =  ( (,) `  <. u ,  v >. )
21 opelxpi 4751 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  QQ  /\  v  e.  QQ )  -> 
<. u ,  v >.  e.  ( QQ  X.  QQ ) )
22213ad2ant2 1043 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  <. u ,  v
>.  e.  ( QQ  X.  QQ ) )
23 ffun 5476 . . . . . . . . . . . . . . . . 17  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
245, 23ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Fun  (,)
25 qssre 9825 . . . . . . . . . . . . . . . . . . 19  |-  QQ  C_  RR
26 ressxr 8190 . . . . . . . . . . . . . . . . . . 19  |-  RR  C_  RR*
2725, 26sstri 3233 . . . . . . . . . . . . . . . . . 18  |-  QQ  C_  RR*
28 xpss12 4826 . . . . . . . . . . . . . . . . . 18  |-  ( ( QQ  C_  RR*  /\  QQ  C_ 
RR* )  ->  ( QQ  X.  QQ )  C_  ( RR*  X.  RR* )
)
2927, 27, 28mp2an 426 . . . . . . . . . . . . . . . . 17  |-  ( QQ 
X.  QQ )  C_  ( RR*  X.  RR* )
305fdmi 5481 . . . . . . . . . . . . . . . . 17  |-  dom  (,)  =  ( RR*  X.  RR* )
3129, 30sseqtrri 3259 . . . . . . . . . . . . . . . 16  |-  ( QQ 
X.  QQ )  C_  dom  (,)
32 funfvima2 5872 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  (,)  /\  ( QQ  X.  QQ )  C_  dom  (,) )  ->  ( <. u ,  v >.  e.  ( QQ  X.  QQ )  ->  ( (,) `  <. u ,  v >. )  e.  ( (,) " ( QQ  X.  QQ ) ) ) )
3324, 31, 32mp2an 426 . . . . . . . . . . . . . . 15  |-  ( <.
u ,  v >.  e.  ( QQ  X.  QQ )  ->  ( (,) `  <. u ,  v >. )  e.  ( (,) " ( QQ  X.  QQ ) ) )
3422, 33syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( (,) `  <. u ,  v >. )  e.  ( (,) " ( QQ  X.  QQ ) ) )
3520, 34eqeltrid 2316 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( u (,) v )  e.  ( (,) " ( QQ 
X.  QQ ) ) )
36113ad2ant1 1042 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  z  e.  RR* )
37 simp3lr 1093 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  u  <  z
)
38 simp3rl 1094 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  z  <  v
)
39 simp2l 1047 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  u  e.  QQ )
4027, 39sselid 3222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  u  e.  RR* )
41 simp2r 1048 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  e.  QQ )
4227, 41sselid 3222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  e.  RR* )
43 elioo1 10107 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  RR*  /\  v  e.  RR* )  ->  (
z  e.  ( u (,) v )  <->  ( z  e.  RR*  /\  u  < 
z  /\  z  <  v ) ) )
4440, 42, 43syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( z  e.  ( u (,) v
)  <->  ( z  e. 
RR*  /\  u  <  z  /\  z  <  v
) ) )
4536, 37, 38, 44mpbir3and 1204 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  z  e.  ( u (,) v ) )
4683ad2ant1 1042 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  x  e.  RR* )
47 simp3ll 1092 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  x  <  u
)
4846, 40, 47xrltled 9995 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  x  <_  u
)
49 iooss1 10112 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  x  <_  u )  ->  (
u (,) v ) 
C_  ( x (,) v ) )
5046, 48, 49syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( u (,) v )  C_  (
x (,) v ) )
51153ad2ant1 1042 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  y  e.  RR* )
52 simp3rr 1095 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  <  y
)
5342, 51, 52xrltled 9995 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  v  <_  y
)
54 iooss2 10113 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  v  <_  y )  ->  (
x (,) v ) 
C_  ( x (,) y ) )
5551, 53, 54syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( x (,) v )  C_  (
x (,) y ) )
5650, 55sstrd 3234 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  ( u (,) v )  C_  (
x (,) y ) )
57 eleq2 2293 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u (,) v )  ->  (
z  e.  w  <->  z  e.  ( u (,) v
) ) )
58 sseq1 3247 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u (,) v )  ->  (
w  C_  ( x (,) y )  <->  ( u (,) v )  C_  (
x (,) y ) ) )
5957, 58anbi12d 473 . . . . . . . . . . . . . 14  |-  ( w  =  ( u (,) v )  ->  (
( z  e.  w  /\  w  C_  ( x (,) y ) )  <-> 
( z  e.  ( u (,) v )  /\  ( u (,) v )  C_  (
x (,) y ) ) ) )
6059rspcev 2907 . . . . . . . . . . . . 13  |-  ( ( ( u (,) v
)  e.  ( (,) " ( QQ  X.  QQ ) )  /\  (
z  e.  ( u (,) v )  /\  ( u (,) v
)  C_  ( x (,) y ) ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
6135, 45, 56, 60syl12anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
RR*  /\  y  e.  RR* )  /\  z  e.  ( x (,) y
) )  /\  (
u  e.  QQ  /\  v  e.  QQ )  /\  ( ( x  < 
u  /\  u  <  z )  /\  ( z  <  v  /\  v  <  y ) ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
62613exp 1226 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( (
u  e.  QQ  /\  v  e.  QQ )  ->  ( ( ( x  <  u  /\  u  <  z )  /\  (
z  <  v  /\  v  <  y ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) ) )
6362rexlimdvv 2655 . . . . . . . . . 10  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( E. u  e.  QQ  E. v  e.  QQ  ( ( x  <  u  /\  u  <  z )  /\  (
z  <  v  /\  v  <  y ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) )
6419, 63biimtrrid 153 . . . . . . . . 9  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  ( ( E. u  e.  QQ  ( x  <  u  /\  u  <  z )  /\  E. v  e.  QQ  (
z  <  v  /\  v  <  y ) )  ->  E. w  e.  ( (,) " ( QQ 
X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) )
6514, 18, 64mp2and 433 . . . . . . . 8  |-  ( ( ( x  e.  RR*  /\  y  e.  RR* )  /\  z  e.  (
x (,) y ) )  ->  E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
6665ralrimiva 2603 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  A. z  e.  ( x (,) y
) E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
67 qtopbas 15196 . . . . . . . 8  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
68 eltg2b 14728 . . . . . . . 8  |-  ( ( (,) " ( QQ 
X.  QQ ) )  e.  TopBases  ->  ( ( x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  <->  A. z  e.  ( x (,) y
) E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) ) )
6967, 68ax-mp 5 . . . . . . 7  |-  ( ( x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  <->  A. z  e.  ( x (,) y
) E. w  e.  ( (,) " ( QQ  X.  QQ ) ) ( z  e.  w  /\  w  C_  ( x (,) y ) ) )
7066, 69sylibr 134 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) )
7170rgen2a 2584 . . . . 5  |-  A. x  e.  RR*  A. y  e. 
RR*  ( x (,) y )  e.  (
topGen `  ( (,) " ( QQ  X.  QQ ) ) )
72 ffnov 6108 . . . . 5  |-  ( (,)
: ( RR*  X.  RR* )
--> ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  <->  ( (,)  Fn  ( RR*  X.  RR* )  /\  A. x  e.  RR*  A. y  e.  RR*  (
x (,) y )  e.  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) ) )
737, 71, 72mpbir2an 948 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
74 frn 5482 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  ->  ran  (,)  C_  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) ) )
7573, 74ax-mp 5 . . 3  |-  ran  (,)  C_  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )
76 2basgeng 14756 . . 3  |-  ( ( ( (,) " ( QQ  X.  QQ ) )  e.  _V  /\  ( (,) " ( QQ  X.  QQ ) )  C_  ran  (,) 
/\  ran  (,)  C_  ( topGen `
 ( (,) " ( QQ  X.  QQ ) ) ) )  ->  ( topGen `
 ( (,) " ( QQ  X.  QQ ) ) )  =  ( topGen ` 
ran  (,) ) )
773, 4, 75, 76mp3an 1371 . 2  |-  ( topGen `  ( (,) " ( QQ  X.  QQ ) ) )  =  ( topGen ` 
ran  (,) )
781, 77eqtr2i 2251 1  |-  ( topGen ` 
ran  (,) )  =  Q
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   <.cop 3669   class class class wbr 4083    X. cxp 4717   dom cdm 4719   ran crn 4720   "cima 4722   Fun wfun 5312    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001   RRcr 7998   RR*cxr 8180    < clt 8181    <_ cle 8182   QQcq 9814   (,)cioo 10084   topGenctg 13287   TopBasesctb 14716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-ioo 10088  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-topgen 13293  df-bases 14717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator