Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pilem3 | Unicode version |
Description: Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.) |
Ref | Expression |
---|---|
pilem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sin0pilem2 13458 | . 2 | |
2 | df-pi 11605 | . . . . . 6 inf | |
3 | lttri3 7988 | . . . . . . . 8 | |
4 | 3 | adantl 275 | . . . . . . 7 |
5 | elioore 9858 | . . . . . . . 8 | |
6 | 5 | adantr 274 | . . . . . . 7 |
7 | 0re 7909 | . . . . . . . . . . . 12 | |
8 | 7 | a1i 9 | . . . . . . . . . . 11 |
9 | 2re 8937 | . . . . . . . . . . . 12 | |
10 | 9 | a1i 9 | . . . . . . . . . . 11 |
11 | 2pos 8958 | . . . . . . . . . . . 12 | |
12 | 11 | a1i 9 | . . . . . . . . . . 11 |
13 | eliooord 9874 | . . . . . . . . . . . 12 | |
14 | 13 | simpld 111 | . . . . . . . . . . 11 |
15 | 8, 10, 5, 12, 14 | lttrd 8034 | . . . . . . . . . 10 |
16 | 5, 15 | elrpd 9639 | . . . . . . . . 9 |
17 | 16 | adantr 274 | . . . . . . . 8 |
18 | simprl 526 | . . . . . . . . . 10 | |
19 | sinf 11656 | . . . . . . . . . . . . 13 | |
20 | ffun 5348 | . . . . . . . . . . . . 13 | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 |
22 | 5 | recnd 7937 | . . . . . . . . . . . . 13 |
23 | 19 | fdmi 5353 | . . . . . . . . . . . . 13 |
24 | 22, 23 | eleqtrrdi 2264 | . . . . . . . . . . . 12 |
25 | funbrfvb 5537 | . . . . . . . . . . . 12 | |
26 | 21, 24, 25 | sylancr 412 | . . . . . . . . . . 11 |
27 | 26 | adantr 274 | . . . . . . . . . 10 |
28 | 18, 27 | mpbid 146 | . . . . . . . . 9 |
29 | 0nn0 9139 | . . . . . . . . . 10 | |
30 | vex 2733 | . . . . . . . . . . 11 | |
31 | 30 | eliniseg 4979 | . . . . . . . . . 10 |
32 | 29, 31 | ax-mp 5 | . . . . . . . . 9 |
33 | 28, 32 | sylibr 133 | . . . . . . . 8 |
34 | 17, 33 | elind 3312 | . . . . . . 7 |
35 | fveq2 5494 | . . . . . . . . . 10 | |
36 | 35 | breq2d 3999 | . . . . . . . . 9 |
37 | simprr 527 | . . . . . . . . . 10 | |
38 | 37 | ad2antrr 485 | . . . . . . . . 9 |
39 | elinel1 3313 | . . . . . . . . . . . 12 | |
40 | 39 | rpred 9642 | . . . . . . . . . . 11 |
41 | 40 | ad2antlr 486 | . . . . . . . . . 10 |
42 | 39 | rpgt0d 9645 | . . . . . . . . . . 11 |
43 | 42 | ad2antlr 486 | . . . . . . . . . 10 |
44 | simpr 109 | . . . . . . . . . 10 | |
45 | 0xr 7955 | . . . . . . . . . . 11 | |
46 | 5 | rexrd 7958 | . . . . . . . . . . . 12 |
47 | 46 | ad3antrrr 489 | . . . . . . . . . . 11 |
48 | elioo2 9867 | . . . . . . . . . . 11 | |
49 | 45, 47, 48 | sylancr 412 | . . . . . . . . . 10 |
50 | 41, 43, 44, 49 | mpbir3and 1175 | . . . . . . . . 9 |
51 | 36, 38, 50 | rspcdva 2839 | . . . . . . . 8 |
52 | elinel2 3314 | . . . . . . . . . 10 | |
53 | 7 | ltnri 8001 | . . . . . . . . . . 11 |
54 | vex 2733 | . . . . . . . . . . . . . . 15 | |
55 | 54 | eliniseg 4979 | . . . . . . . . . . . . . 14 |
56 | 29, 55 | ax-mp 5 | . . . . . . . . . . . . 13 |
57 | funbrfv 5533 | . . . . . . . . . . . . . 14 | |
58 | 21, 57 | ax-mp 5 | . . . . . . . . . . . . 13 |
59 | 56, 58 | sylbi 120 | . . . . . . . . . . . 12 |
60 | 59 | breq2d 3999 | . . . . . . . . . . 11 |
61 | 53, 60 | mtbiri 670 | . . . . . . . . . 10 |
62 | 52, 61 | syl 14 | . . . . . . . . 9 |
63 | 62 | ad2antlr 486 | . . . . . . . 8 |
64 | 51, 63 | pm2.65da 656 | . . . . . . 7 |
65 | 4, 6, 34, 64 | infminti 7001 | . . . . . 6 inf |
66 | 2, 65 | eqtrid 2215 | . . . . 5 |
67 | simpl 108 | . . . . 5 | |
68 | 66, 67 | eqeltrd 2247 | . . . 4 |
69 | 66 | fveqeq2d 5502 | . . . . 5 |
70 | 18, 69 | mpbird 166 | . . . 4 |
71 | 68, 70 | jca 304 | . . 3 |
72 | 71 | rexlimiva 2582 | . 2 |
73 | 1, 72 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 cin 3120 csn 3581 class class class wbr 3987 ccnv 4608 cdm 4609 cima 4612 wfun 5190 wf 5192 cfv 5196 (class class class)co 5851 infcinf 6957 cc 7761 cr 7762 cc0 7763 cxr 7942 clt 7943 c2 8918 c4 8920 cn0 9124 crp 9599 cioo 9834 csin 11596 cpi 11599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 ax-pre-suploc 7884 ax-addf 7885 ax-mulf 7886 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-disj 3965 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-of 6059 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-frec 6368 df-1o 6393 df-oadd 6397 df-er 6510 df-map 6625 df-pm 6626 df-en 6716 df-dom 6717 df-fin 6718 df-sup 6958 df-inf 6959 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-5 8929 df-6 8930 df-7 8931 df-8 8932 df-9 8933 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-xneg 9718 df-xadd 9719 df-ioo 9838 df-ioc 9839 df-ico 9840 df-icc 9841 df-fz 9955 df-fzo 10088 df-seqfrec 10391 df-exp 10465 df-fac 10649 df-bc 10671 df-ihash 10699 df-shft 10768 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-clim 11231 df-sumdc 11306 df-ef 11600 df-sin 11602 df-cos 11603 df-pi 11605 df-rest 12570 df-topgen 12589 df-psmet 12742 df-xmet 12743 df-met 12744 df-bl 12745 df-mopn 12746 df-top 12751 df-topon 12764 df-bases 12796 df-ntr 12851 df-cn 12943 df-cnp 12944 df-tx 13008 df-cncf 13313 df-limced 13380 df-dvap 13381 |
This theorem is referenced by: pigt2lt4 13460 sinpi 13461 pire 13462 |
Copyright terms: Public domain | W3C validator |