ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pilem3 Unicode version

Theorem pilem3 13459
Description: Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
pilem3  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )

Proof of Theorem pilem3
Dummy variables  f  g  q  x  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sin0pilem2 13458 . 2  |-  E. q  e.  ( 2 (,) 4
) ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
2 df-pi 11605 . . . . . 6  |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
3 lttri3 7988 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
43adantl 275 . . . . . . 7  |-  ( ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
5 elioore 9858 . . . . . . . 8  |-  ( q  e.  ( 2 (,) 4 )  ->  q  e.  RR )
65adantr 274 . . . . . . 7  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  q  e.  RR )
7 0re 7909 . . . . . . . . . . . 12  |-  0  e.  RR
87a1i 9 . . . . . . . . . . 11  |-  ( q  e.  ( 2 (,) 4 )  ->  0  e.  RR )
9 2re 8937 . . . . . . . . . . . 12  |-  2  e.  RR
109a1i 9 . . . . . . . . . . 11  |-  ( q  e.  ( 2 (,) 4 )  ->  2  e.  RR )
11 2pos 8958 . . . . . . . . . . . 12  |-  0  <  2
1211a1i 9 . . . . . . . . . . 11  |-  ( q  e.  ( 2 (,) 4 )  ->  0  <  2 )
13 eliooord 9874 . . . . . . . . . . . 12  |-  ( q  e.  ( 2 (,) 4 )  ->  (
2  <  q  /\  q  <  4 ) )
1413simpld 111 . . . . . . . . . . 11  |-  ( q  e.  ( 2 (,) 4 )  ->  2  <  q )
158, 10, 5, 12, 14lttrd 8034 . . . . . . . . . 10  |-  ( q  e.  ( 2 (,) 4 )  ->  0  <  q )
165, 15elrpd 9639 . . . . . . . . 9  |-  ( q  e.  ( 2 (,) 4 )  ->  q  e.  RR+ )
1716adantr 274 . . . . . . . 8  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  q  e.  RR+ )
18 simprl 526 . . . . . . . . . 10  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  ( sin `  q
)  =  0 )
19 sinf 11656 . . . . . . . . . . . . 13  |-  sin : CC
--> CC
20 ffun 5348 . . . . . . . . . . . . 13  |-  ( sin
: CC --> CC  ->  Fun 
sin )
2119, 20ax-mp 5 . . . . . . . . . . . 12  |-  Fun  sin
225recnd 7937 . . . . . . . . . . . . 13  |-  ( q  e.  ( 2 (,) 4 )  ->  q  e.  CC )
2319fdmi 5353 . . . . . . . . . . . . 13  |-  dom  sin  =  CC
2422, 23eleqtrrdi 2264 . . . . . . . . . . . 12  |-  ( q  e.  ( 2 (,) 4 )  ->  q  e.  dom  sin )
25 funbrfvb 5537 . . . . . . . . . . . 12  |-  ( ( Fun  sin  /\  q  e.  dom  sin )  -> 
( ( sin `  q
)  =  0  <->  q sin 0 ) )
2621, 24, 25sylancr 412 . . . . . . . . . . 11  |-  ( q  e.  ( 2 (,) 4 )  ->  (
( sin `  q
)  =  0  <->  q sin 0 ) )
2726adantr 274 . . . . . . . . . 10  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  ( ( sin `  q )  =  0  <-> 
q sin 0 ) )
2818, 27mpbid 146 . . . . . . . . 9  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  q sin 0
)
29 0nn0 9139 . . . . . . . . . 10  |-  0  e.  NN0
30 vex 2733 . . . . . . . . . . 11  |-  q  e. 
_V
3130eliniseg 4979 . . . . . . . . . 10  |-  ( 0  e.  NN0  ->  ( q  e.  ( `' sin " { 0 } )  <-> 
q sin 0 ) )
3229, 31ax-mp 5 . . . . . . . . 9  |-  ( q  e.  ( `' sin " { 0 } )  <-> 
q sin 0 )
3328, 32sylibr 133 . . . . . . . 8  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  q  e.  ( `' sin " { 0 } ) )
3417, 33elind 3312 . . . . . . 7  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  q  e.  (
RR+  i^i  ( `' sin " { 0 } ) ) )
35 fveq2 5494 . . . . . . . . . 10  |-  ( x  =  t  ->  ( sin `  x )  =  ( sin `  t
) )
3635breq2d 3999 . . . . . . . . 9  |-  ( x  =  t  ->  (
0  <  ( sin `  x )  <->  0  <  ( sin `  t ) ) )
37 simprr 527 . . . . . . . . . 10  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
3837ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) )
39 elinel1 3313 . . . . . . . . . . . 12  |-  ( t  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
t  e.  RR+ )
4039rpred 9642 . . . . . . . . . . 11  |-  ( t  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
t  e.  RR )
4140ad2antlr 486 . . . . . . . . . 10  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  t  e.  RR )
4239rpgt0d 9645 . . . . . . . . . . 11  |-  ( t  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
0  <  t )
4342ad2antlr 486 . . . . . . . . . 10  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  0  <  t )
44 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  t  <  q )
45 0xr 7955 . . . . . . . . . . 11  |-  0  e.  RR*
465rexrd 7958 . . . . . . . . . . . 12  |-  ( q  e.  ( 2 (,) 4 )  ->  q  e.  RR* )
4746ad3antrrr 489 . . . . . . . . . . 11  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  q  e.  RR* )
48 elioo2 9867 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  q  e.  RR* )  ->  (
t  e.  ( 0 (,) q )  <->  ( t  e.  RR  /\  0  < 
t  /\  t  <  q ) ) )
4945, 47, 48sylancr 412 . . . . . . . . . 10  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  ( t  e.  ( 0 (,) q
)  <->  ( t  e.  RR  /\  0  < 
t  /\  t  <  q ) ) )
5041, 43, 44, 49mpbir3and 1175 . . . . . . . . 9  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  t  e.  ( 0 (,) q
) )
5136, 38, 50rspcdva 2839 . . . . . . . 8  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  0  <  ( sin `  t ) )
52 elinel2 3314 . . . . . . . . . 10  |-  ( t  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
t  e.  ( `' sin " { 0 } ) )
537ltnri 8001 . . . . . . . . . . 11  |-  -.  0  <  0
54 vex 2733 . . . . . . . . . . . . . . 15  |-  t  e. 
_V
5554eliniseg 4979 . . . . . . . . . . . . . 14  |-  ( 0  e.  NN0  ->  ( t  e.  ( `' sin " { 0 } )  <-> 
t sin 0 ) )
5629, 55ax-mp 5 . . . . . . . . . . . . 13  |-  ( t  e.  ( `' sin " { 0 } )  <-> 
t sin 0 )
57 funbrfv 5533 . . . . . . . . . . . . . 14  |-  ( Fun 
sin  ->  ( t sin 0  ->  ( sin `  t )  =  0 ) )
5821, 57ax-mp 5 . . . . . . . . . . . . 13  |-  ( t sin 0  ->  ( sin `  t )  =  0 )
5956, 58sylbi 120 . . . . . . . . . . . 12  |-  ( t  e.  ( `' sin " { 0 } )  ->  ( sin `  t
)  =  0 )
6059breq2d 3999 . . . . . . . . . . 11  |-  ( t  e.  ( `' sin " { 0 } )  ->  ( 0  < 
( sin `  t
)  <->  0  <  0
) )
6153, 60mtbiri 670 . . . . . . . . . 10  |-  ( t  e.  ( `' sin " { 0 } )  ->  -.  0  <  ( sin `  t ) )
6252, 61syl 14 . . . . . . . . 9  |-  ( t  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  ->  -.  0  <  ( sin `  t ) )
6362ad2antlr 486 . . . . . . . 8  |-  ( ( ( ( q  e.  ( 2 (,) 4
)  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  /\  t  <  q
)  ->  -.  0  <  ( sin `  t
) )
6451, 63pm2.65da 656 . . . . . . 7  |-  ( ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q )  =  0  /\  A. x  e.  ( 0 (,) q
) 0  <  ( sin `  x ) ) )  /\  t  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  -.  t  <  q )
654, 6, 34, 64infminti 7001 . . . . . 6  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  -> inf ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  <  )  =  q )
662, 65eqtrid 2215 . . . . 5  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  pi  =  q )
67 simpl 108 . . . . 5  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  q  e.  ( 2 (,) 4 ) )
6866, 67eqeltrd 2247 . . . 4  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  pi  e.  ( 2 (,) 4 ) )
6966fveqeq2d 5502 . . . . 5  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  ( ( sin `  pi )  =  0  <-> 
( sin `  q
)  =  0 ) )
7018, 69mpbird 166 . . . 4  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  ( sin `  pi )  =  0 )
7168, 70jca 304 . . 3  |-  ( ( q  e.  ( 2 (,) 4 )  /\  ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) ) )  ->  ( pi  e.  ( 2 (,) 4
)  /\  ( sin `  pi )  =  0 ) )
7271rexlimiva 2582 . 2  |-  ( E. q  e.  ( 2 (,) 4 ) ( ( sin `  q
)  =  0  /\ 
A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )  -> 
( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 ) )
731, 72ax-mp 5 1  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120   {csn 3581   class class class wbr 3987   `'ccnv 4608   dom cdm 4609   "cima 4612   Fun wfun 5190   -->wf 5192   ` cfv 5196  (class class class)co 5851  infcinf 6957   CCcc 7761   RRcr 7762   0cc0 7763   RR*cxr 7942    < clt 7943   2c2 8918   4c4 8920   NN0cn0 9124   RR+crp 9599   (,)cioo 9834   sincsin 11596   picpi 11599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883  ax-pre-suploc 7884  ax-addf 7885  ax-mulf 7886
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-of 6059  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6510  df-map 6625  df-pm 6626  df-en 6716  df-dom 6717  df-fin 6718  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-5 8929  df-6 8930  df-7 8931  df-8 8932  df-9 8933  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-xneg 9718  df-xadd 9719  df-ioo 9838  df-ioc 9839  df-ico 9840  df-icc 9841  df-fz 9955  df-fzo 10088  df-seqfrec 10391  df-exp 10465  df-fac 10649  df-bc 10671  df-ihash 10699  df-shft 10768  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231  df-sumdc 11306  df-ef 11600  df-sin 11602  df-cos 11603  df-pi 11605  df-rest 12570  df-topgen 12589  df-psmet 12742  df-xmet 12743  df-met 12744  df-bl 12745  df-mopn 12746  df-top 12751  df-topon 12764  df-bases 12796  df-ntr 12851  df-cn 12943  df-cnp 12944  df-tx 13008  df-cncf 13313  df-limced 13380  df-dvap 13381
This theorem is referenced by:  pigt2lt4  13460  sinpi  13461  pire  13462
  Copyright terms: Public domain W3C validator