HomeHome Intuitionistic Logic Explorer
Theorem List (p. 54 of 114)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfunopfv 5301 The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
 |-  ( Fun  F  ->  (
 <. A ,  B >.  e.  F  ->  ( F `  A )  =  B ) )
 
Theoremfnbrfvb 5302 Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `
  B )  =  C  <->  B F C ) )
 
Theoremfnopfvb 5303 Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `
  B )  =  C  <->  <. B ,  C >.  e.  F ) )
 
Theoremfunbrfvb 5304 Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  =  B  <->  A F B ) )
 
Theoremfunopfvb 5305 Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  =  B  <->  <. A ,  B >.  e.  F ) )
 
Theoremfunbrfv2b 5306 Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
 |-  ( Fun  F  ->  ( A F B  <->  ( A  e.  dom 
 F  /\  ( F `  A )  =  B ) ) )
 
Theoremdffn5im 5307* Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5014 and dmmptss 4890. (Contributed by Jim Kingdon, 31-Dec-2018.)
 |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `
  x ) ) )
 
Theoremfnrnfv 5308* The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( F  Fn  A  ->  ran  F  =  {
 y  |  E. x  e.  A  y  =  ( F `  x ) } )
 
Theoremfvelrnb 5309* A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
 |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
 
Theoremdfimafn 5310* Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( F " A )  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
 
Theoremdfimafn2 5311* Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( F " A )  =  U_ x  e.  A  { ( F `
  x ) }
 )
 
Theoremfunimass4 5312* Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfvelima 5313* Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( Fun  F  /\  A  e.  ( F
 " B ) ) 
 ->  E. x  e.  B  ( F `  x )  =  A )
 
Theoremfeqmptd 5314* Deduction form of dffn5im 5307. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
 
Theoremfeqresmpt 5315* Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
 
Theoremdffn5imf 5316* Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
 |-  F/_ x F   =>    |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `
  x ) ) )
 
Theoremfvelimab 5317* Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
 |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
 
Theoremfvi 5318 The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( A  e.  V  ->  (  _I  `  A )  =  A )
 
Theoremfniinfv 5319* The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
 |-  ( F  Fn  A  -> 
 |^|_ x  e.  A  ( F `  x )  =  |^| ran  F )
 
Theoremfnsnfv 5320 Singleton of function value. (Contributed by NM, 22-May-1998.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `
  B ) }  =  ( F " { B } ) )
 
Theoremfnimapr 5321 The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
 |-  ( ( F  Fn  A  /\  B  e.  A  /\  C  e.  A ) 
 ->  ( F " { B ,  C }
 )  =  { ( F `  B ) ,  ( F `  C ) } )
 
Theoremssimaex 5322* The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
 |-  A  e.  _V   =>    |-  ( ( Fun 
 F  /\  B  C_  ( F " A ) ) 
 ->  E. x ( x 
 C_  A  /\  B  =  ( F " x ) ) )
 
Theoremssimaexg 5323* The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
 |-  ( ( A  e.  C  /\  Fun  F  /\  B  C_  ( F " A ) )  ->  E. x ( x  C_  A  /\  B  =  ( F " x ) ) )
 
Theoremfunfvdm 5324 A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  =  U. ( F " { A } ) )
 
Theoremfunfvdm2 5325* The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  =  U. { y  |  A F y } )
 
Theoremfunfvdm2f 5326 The value of a function. Version of funfvdm2 5325 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 1-Jan-2019.)
 |-  F/_ y A   &    |-  F/_ y F   =>    |-  ( ( Fun 
 F  /\  A  e.  dom 
 F )  ->  ( F `  A )  = 
 U. { y  |  A F y }
 )
 
Theoremfvun1 5327 The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  ( ( F  u.  G ) `  X )  =  ( F `  X ) )
 
Theoremfvun2 5328 The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  ->  ( ( F  u.  G ) `  X )  =  ( G `  X ) )
 
Theoremdmfco 5329 Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
 |-  ( ( Fun  G  /\  A  e.  dom  G )  ->  ( A  e.  dom  ( F  o.  G ) 
 <->  ( G `  A )  e.  dom  F ) )
 
Theoremfvco2 5330 Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
 |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( ( F  o.  G ) `  X )  =  ( F `  ( G `  X ) ) )
 
Theoremfvco 5331 Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
 |-  ( ( Fun  G  /\  A  e.  dom  G )  ->  ( ( F  o.  G ) `  A )  =  ( F `  ( G `  A ) ) )
 
Theoremfvco3 5332 Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.)
 |-  ( ( G : A
 --> B  /\  C  e.  A )  ->  ( ( F  o.  G ) `
  C )  =  ( F `  ( G `  C ) ) )
 
Theoremfvco4 5333 Value of a composition. (Contributed by BJ, 7-Jul-2022.)
 |-  ( ( ( K : A --> X  /\  ( H  o.  K )  =  F )  /\  ( u  e.  A  /\  x  =  ( K `  u ) ) )  ->  ( H `  x )  =  ( F `  u ) )
 
Theoremfvopab3g 5334* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( x  e.  C  ->  E! y ph )   &    |-  F  =  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( F `
  A )  =  B  <->  ch ) )
 
Theoremfvopab3ig 5335* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( x  e.  C  ->  E* y ph )   &    |-  F  =  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
 
Theoremfvmptss2 5336* A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
 |-  ( x  =  D  ->  B  =  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( F `  D )  C_  C
 
Theoremfvmptg 5337* Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( ( A  e.  D  /\  C  e.  R )  ->  ( F `  A )  =  C )
 
Theoremfvmpt 5338* Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  C  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmpts 5339* Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  C  |->  B )   =>    |-  ( ( A  e.  C  /\  [_ A  /  x ]_ B  e.  V ) 
 ->  ( F `  A )  =  [_ A  /  x ]_ B )
 
Theoremfvmpt3 5340* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  ( x  e.  D  ->  B  e.  V )   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmpt3i 5341* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  B  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmptd 5342* Deduction version of fvmpt 5338. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )   &    |-  (
 ( ph  /\  x  =  A )  ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremfvmpt2 5343* Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `
  x )  =  B )
 
Theoremfvmptssdm 5344* If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( D  e.  dom 
 F  /\  A. x  e.  A  B  C_  C )  ->  ( F `  D )  C_  C )
 
Theoremmptfvex 5345* Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
 
Theoremfvmpt2d 5346* Deduction version of fvmpt2 5343. (Contributed by Thierry Arnoux, 8-Dec-2016.)
 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  V )   =>    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
 
Theoremfvmptdf 5347* Alternate deduction version of fvmpt 5338, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   &    |-  F/_ x F   &    |-  F/ x ps   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv 5348* Alternate deduction version of fvmpt 5338, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv2 5349* Alternate deduction version of fvmpt 5338, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
 
Theoremmpteqb 5350* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5354. (Contributed by Mario Carneiro, 14-Nov-2014.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
 )
 
Theoremfvmptt 5351* Closed theorem form of fvmpt 5338. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  ( ( A. x ( x  =  A  ->  B  =  C ) 
 /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V ) )  ->  ( F `  A )  =  C )
 
Theoremfvmptf 5352* Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5337 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x C   &    |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A )  =  C )
 
Theoremfvopab6 5353* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  F  =  { <. x ,  y >.  |  (
 ph  /\  y  =  B ) }   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `  A )  =  C )
 
Theoremeqfnfv 5354* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
 
Theoremeqfnfv2 5355* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G 
 <->  ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
 
Theoremeqfnfv3 5356* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G 
 <->  ( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x )  =  ( G `  x ) ) ) ) )
 
Theoremeqfnfvd 5357* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )   =>    |-  ( ph  ->  F  =  G )
 
Theoremeqfnfv2f 5358* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5354 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
 |-  F/_ x F   &    |-  F/_ x G   =>    |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
 
Theoremeqfunfv 5359* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G 
 /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
 
Theoremfvreseq 5360* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  B  C_  A )  ->  (
 ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
 
Theoremfndmdif 5361* Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  { x  e.  A  |  ( F `  x )  =/=  ( G `  x ) } )
 
Theoremfndmdifcom 5362 The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )
 
Theoremfndmin 5363* Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
 
Theoremfneqeql 5364 Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 dom  ( F  i^i  G )  =  A ) )
 
Theoremfneqeql2 5365 Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <->  A  C_  dom  ( F  i^i  G ) ) )
 
Theoremfnreseql 5366 Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  ->  ( ( F  |`  X )  =  ( G  |`  X )  <->  X  C_  dom  ( F  i^i  G ) ) )
 
Theoremchfnrn 5367* The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
 
Theoremfunfvop 5368 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A ) >.  e.  F )
 
Theoremfunfvbrb 5369 Two ways to say that  A is in the domain of  F. (Contributed by Mario Carneiro, 1-May-2014.)
 |-  ( Fun  F  ->  ( A  e.  dom  F  <->  A F ( F `  A ) ) )
 
Theoremfvimacnvi 5370 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
 |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  ( F `  A )  e.  B )
 
Theoremfvimacnv 5371 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5054 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
 
Theoremfunimass3 5372 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5371 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( ( F " A )  C_  B  <->  A  C_  ( `' F " B ) ) )
 
Theoremfunimass5 5373* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A  C_  ( `' F " B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfunconstss 5374* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A. x  e.  A  ( F `  x )  =  B  <->  A 
 C_  ( `' F " { B } )
 ) )
 
Theoremelpreima 5375 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  <-> 
 ( B  e.  A  /\  ( F `  B )  e.  C )
 ) )
 
Theoremfniniseg 5376 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B } )  <->  ( C  e.  A  /\  ( F `  C )  =  B ) ) )
 
Theoremfncnvima2 5377* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  e.  A  |  ( F `  x )  e.  B } )
 
Theoremfniniseg2 5378* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " { B } )  =  { x  e.  A  |  ( F `  x )  =  B }
 )
 
Theoremfnniniseg2 5379* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F "
 ( _V  \  { B } ) )  =  { x  e.  A  |  ( F `  x )  =/=  B } )
 
Theoremrexsupp 5380* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
 |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F "
 ( _V  \  { Z } ) ) ph  <->  E. x  e.  A  (
 ( F `  x )  =/=  Z  /\  ph )
 ) )
 
Theoremunpreima 5381 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
 
Theoreminpreima 5382 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
 
Theoremdifpreima 5383 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A 
 \  B ) )  =  ( ( `' F " A ) 
 \  ( `' F " B ) ) )
 
Theoremrespreima 5384 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' ( F  |`  B )
 " A )  =  ( ( `' F " A )  i^i  B ) )
 
Theoremfimacnv 5385 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
 |-  ( F : A --> B  ->  ( `' F " B )  =  A )
 
Theoremfnopfv 5386 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  <. B ,  ( F `  B ) >.  e.  F )
 
Theoremfvelrn 5387 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F )
 
Theoremfnfvelrn 5388 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B )  e.  ran  F )
 
Theoremffvelrn 5389 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
 |-  ( ( F : A
 --> B  /\  C  e.  A )  ->  ( F `
  C )  e.  B )
 
Theoremffvelrni 5390 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
 |-  F : A --> B   =>    |-  ( C  e.  A  ->  ( F `  C )  e.  B )
 
Theoremffvelrnda 5391 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  ( F `  C )  e.  B )
 
Theoremffvelrnd 5392 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ( F `  C )  e.  B )
 
Theoremrexrn 5393* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( E. x  e.  ran  F ph  <->  E. y  e.  A  ps ) )
 
Theoremralrn 5394* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( A. x  e.  ran  F ph  <->  A. y  e.  A  ps ) )
 
Theoremelrnrexdm 5395* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `
  x ) ) )
 
Theoremelrnrexdmb 5396* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  ran  F  <->  E. x  e.  dom  F  Y  =  ( F `  x ) ) )
 
Theoremeldmrexrn 5397* For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `
  Y ) ) )
 
Theoremralrnmpt 5398* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e. 
 ran  F ps  <->  A. x  e.  A  ch ) )
 
Theoremrexrnmpt 5399* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e. 
 ran  F ps  <->  E. x  e.  A  ch ) )
 
Theoremdff2 5400 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11355
  Copyright terms: Public domain < Previous  Next >