ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq23i Unicode version

Theorem feq23i 5420
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq23i.1  |-  A  =  C
feq23i.2  |-  B  =  D
Assertion
Ref Expression
feq23i  |-  ( F : A --> B  <->  F : C
--> D )

Proof of Theorem feq23i
StepHypRef Expression
1 feq23i.1 . 2  |-  A  =  C
2 feq23i.2 . 2  |-  B  =  D
3 feq23 5411 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  F : C --> D ) )
41, 2, 3mp2an 426 1  |-  ( F : A --> B  <->  F : C
--> D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-fn 5274  df-f 5275
This theorem is referenced by:  ftpg  5768
  Copyright terms: Public domain W3C validator