ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq23 Unicode version

Theorem feq23 5333
Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
feq23  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  F : C --> D ) )

Proof of Theorem feq23
StepHypRef Expression
1 feq2 5331 . 2  |-  ( A  =  C  ->  ( F : A --> B  <->  F : C
--> B ) )
2 feq3 5332 . 2  |-  ( B  =  D  ->  ( F : C --> B  <->  F : C
--> D ) )
31, 2sylan9bb 459 1  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  F : C --> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-fn 5201  df-f 5202
This theorem is referenced by:  feq23i  5342
  Copyright terms: Public domain W3C validator