ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq23 Unicode version

Theorem feq23 5370
Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
feq23  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  F : C --> D ) )

Proof of Theorem feq23
StepHypRef Expression
1 feq2 5368 . 2  |-  ( A  =  C  ->  ( F : A --> B  <->  F : C
--> B ) )
2 feq3 5369 . 2  |-  ( B  =  D  ->  ( F : C --> B  <->  F : C
--> D ) )
31, 2sylan9bb 462 1  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A --> B 
<->  F : C --> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   -->wf 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-fn 5238  df-f 5239
This theorem is referenced by:  feq23i  5379
  Copyright terms: Public domain W3C validator