| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq23d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| feq23d.1 |
|
| feq23d.2 |
|
| Ref | Expression |
|---|---|
| feq23d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 |
. 2
| |
| 2 | feq23d.1 |
. 2
| |
| 3 | feq23d.2 |
. 2
| |
| 4 | 1, 2, 3 | feq123d 5463 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 |
| This theorem is referenced by: intopsn 13395 mhmpropd 13494 grp1inv 13635 isrhm2d 14123 rhmopp 14134 |
| Copyright terms: Public domain | W3C validator |