ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq23d Unicode version

Theorem feq23d 5343
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
feq23d.1  |-  ( ph  ->  A  =  C )
feq23d.2  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
feq23d  |-  ( ph  ->  ( F : A --> B 
<->  F : C --> D ) )

Proof of Theorem feq23d
StepHypRef Expression
1 eqidd 2171 . 2  |-  ( ph  ->  F  =  F )
2 feq23d.1 . 2  |-  ( ph  ->  A  =  C )
3 feq23d.2 . 2  |-  ( ph  ->  B  =  D )
41, 2, 3feq123d 5338 1  |-  ( ph  ->  ( F : A --> B 
<->  F : C --> D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by:  intopsn  12621  mhmpropd  12689
  Copyright terms: Public domain W3C validator