ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2i Unicode version

Theorem feq2i 5401
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
Hypothesis
Ref Expression
feq2i.1  |-  A  =  B
Assertion
Ref Expression
feq2i  |-  ( F : A --> C  <->  F : B
--> C )

Proof of Theorem feq2i
StepHypRef Expression
1 feq2i.1 . 2  |-  A  =  B
2 feq2 5391 . 2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
31, 2ax-mp 5 1  |-  ( F : A --> C  <->  F : B
--> C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5261  df-f 5262
This theorem is referenced by:  fmpox  6258  fmpo  6259  tposf  6330  issmo  6346  tfrcllemsucfn  6411  1fv  10214  fxnn0nninf  10531  snopiswrd  10945  iswrddm0  10959  0met  14620  dvef  14963
  Copyright terms: Public domain W3C validator