ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2i Unicode version

Theorem feq2i 5339
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
Hypothesis
Ref Expression
feq2i.1  |-  A  =  B
Assertion
Ref Expression
feq2i  |-  ( F : A --> C  <->  F : B
--> C )

Proof of Theorem feq2i
StepHypRef Expression
1 feq2i.1 . 2  |-  A  =  B
2 feq2 5329 . 2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
31, 2ax-mp 5 1  |-  ( F : A --> C  <->  F : B
--> C )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   -->wf 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-fn 5199  df-f 5200
This theorem is referenced by:  fmpox  6176  fmpo  6177  tposf  6248  issmo  6264  tfrcllemsucfn  6329  1fv  10082  fxnn0nninf  10381  0met  13137  dvef  13441
  Copyright terms: Public domain W3C validator