ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2i Unicode version

Theorem feq2i 5439
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
Hypothesis
Ref Expression
feq2i.1  |-  A  =  B
Assertion
Ref Expression
feq2i  |-  ( F : A --> C  <->  F : B
--> C )

Proof of Theorem feq2i
StepHypRef Expression
1 feq2i.1 . 2  |-  A  =  B
2 feq2 5429 . 2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
31, 2ax-mp 5 1  |-  ( F : A --> C  <->  F : B
--> C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-fn 5293  df-f 5294
This theorem is referenced by:  fmpox  6309  fmpo  6310  tposf  6381  issmo  6397  tfrcllemsucfn  6462  1fv  10296  fxnn0nninf  10621  snopiswrd  11041  iswrddm0  11055  0met  14971  dvef  15314  uhgr0e  15793
  Copyright terms: Public domain W3C validator