ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2i Unicode version

Theorem feq2i 5155
Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
Hypothesis
Ref Expression
feq2i.1  |-  A  =  B
Assertion
Ref Expression
feq2i  |-  ( F : A --> C  <->  F : B
--> C )

Proof of Theorem feq2i
StepHypRef Expression
1 feq2i.1 . 2  |-  A  =  B
2 feq2 5146 . 2  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
31, 2ax-mp 7 1  |-  ( F : A --> C  <->  F : B
--> C )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1289   -->wf 5011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-4 1445  ax-17 1464  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-cleq 2081  df-fn 5018  df-f 5019
This theorem is referenced by:  fmpt2x  5970  fmpt2  5971  tposf  6037  issmo  6053  tfrcllemsucfn  6118  1fv  9550  fxnn0nninf  9844  iseqfcl  9878
  Copyright terms: Public domain W3C validator