Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq23i | GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq23i.1 | ⊢ 𝐴 = 𝐶 |
feq23i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
3 | feq23 5323 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-fn 5191 df-f 5192 |
This theorem is referenced by: ftpg 5669 |
Copyright terms: Public domain | W3C validator |