| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > feq23i | GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| feq23i.1 | ⊢ 𝐴 = 𝐶 | 
| feq23i.2 | ⊢ 𝐵 = 𝐷 | 
| Ref | Expression | 
|---|---|
| feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
| 2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
| 3 | feq23 5393 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: ftpg 5746 | 
| Copyright terms: Public domain | W3C validator |