| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ftpg | Unicode version | ||
| Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ftpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1018 |
. . . 4
| |
| 2 | 3simpa 1018 |
. . . 4
| |
| 3 | simp1 1021 |
. . . 4
| |
| 4 | fprg 5821 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3an 1313 |
. . 3
|
| 6 | eqidd 2230 |
. . . 4
| |
| 7 | simp3 1023 |
. . . . . . 7
| |
| 8 | simp3 1023 |
. . . . . . 7
| |
| 9 | 7, 8 | anim12i 338 |
. . . . . 6
|
| 10 | 9 | 3adant3 1041 |
. . . . 5
|
| 11 | fsng 5807 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | 6, 12 | mpbird 167 |
. . 3
|
| 14 | df-ne 2401 |
. . . . . . 7
| |
| 15 | df-ne 2401 |
. . . . . . 7
| |
| 16 | elpri 3689 |
. . . . . . . . . 10
| |
| 17 | eqcom 2231 |
. . . . . . . . . . 11
| |
| 18 | eqcom 2231 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | orbi12i 769 |
. . . . . . . . . 10
|
| 20 | 16, 19 | sylib 122 |
. . . . . . . . 9
|
| 21 | oranim 786 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | con2i 630 |
. . . . . . 7
|
| 24 | 14, 15, 23 | syl2anb 291 |
. . . . . 6
|
| 25 | 24 | 3adant1 1039 |
. . . . 5
|
| 26 | 25 | 3ad2ant3 1044 |
. . . 4
|
| 27 | disjsn 3728 |
. . . 4
| |
| 28 | 26, 27 | sylibr 134 |
. . 3
|
| 29 | fun 5496 |
. . 3
| |
| 30 | 5, 13, 28, 29 | syl21anc 1270 |
. 2
|
| 31 | df-tp 3674 |
. . . 4
| |
| 32 | 31 | feq1i 5465 |
. . 3
|
| 33 | df-tp 3674 |
. . . 4
| |
| 34 | df-tp 3674 |
. . . 4
| |
| 35 | 33, 34 | feq23i 5467 |
. . 3
|
| 36 | 32, 35 | bitri 184 |
. 2
|
| 37 | 30, 36 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: ftp 5823 |
| Copyright terms: Public domain | W3C validator |