ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftpg Unicode version

Theorem ftpg 5481
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C } )

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 940 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 940 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 943 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 fprg 5480 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }
)
51, 2, 3, 4syl3an 1216 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B } )
6 eqidd 2089 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. Z ,  C >. }  =  { <. Z ,  C >. } )
7 simp3 945 . . . . . . 7  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  Z  e.  W )
8 simp3 945 . . . . . . 7  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  C  e.  H )
97, 8anim12i 331 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H ) )  -> 
( Z  e.  W  /\  C  e.  H
) )
1093adant3 963 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( Z  e.  W  /\  C  e.  H
) )
11 fsng 5470 . . . . 5  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  ( { <. Z ,  C >. } : { Z } --> { C }  <->  {
<. Z ,  C >. }  =  { <. Z ,  C >. } ) )
1210, 11syl 14 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { <. Z ,  C >. } : { Z } --> { C }  <->  {
<. Z ,  C >. }  =  { <. Z ,  C >. } ) )
136, 12mpbird 165 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. Z ,  C >. } : { Z }
--> { C } )
14 df-ne 2256 . . . . . . 7  |-  ( X  =/=  Z  <->  -.  X  =  Z )
15 df-ne 2256 . . . . . . 7  |-  ( Y  =/=  Z  <->  -.  Y  =  Z )
16 elpri 3469 . . . . . . . . . 10  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 eqcom 2090 . . . . . . . . . . 11  |-  ( Z  =  X  <->  X  =  Z )
18 eqcom 2090 . . . . . . . . . . 11  |-  ( Z  =  Y  <->  Y  =  Z )
1917, 18orbi12i 716 . . . . . . . . . 10  |-  ( ( Z  =  X  \/  Z  =  Y )  <->  ( X  =  Z  \/  Y  =  Z )
)
2016, 19sylib 120 . . . . . . . . 9  |-  ( Z  e.  { X ,  Y }  ->  ( X  =  Z  \/  Y  =  Z ) )
21 oranim 845 . . . . . . . . 9  |-  ( ( X  =  Z  \/  Y  =  Z )  ->  -.  ( -.  X  =  Z  /\  -.  Y  =  Z ) )
2220, 21syl 14 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  -.  ( -.  X  =  Z  /\  -.  Y  =  Z ) )
2322con2i 592 . . . . . . 7  |-  ( ( -.  X  =  Z  /\  -.  Y  =  Z )  ->  -.  Z  e.  { X ,  Y } )
2414, 15, 23syl2anb 285 . . . . . 6  |-  ( ( X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
25243adant1 961 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
26253ad2ant3 966 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  -.  Z  e.  { X ,  Y } )
27 disjsn 3504 . . . 4  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
2826, 27sylibr 132 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
29 fun 5183 . . 3  |-  ( ( ( { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }  /\  { <. Z ,  C >. } : { Z }
--> { C } )  /\  ( { X ,  Y }  i^i  { Z } )  =  (/) )  ->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
305, 13, 28, 29syl21anc 1173 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
31 df-tp 3454 . . . 4  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3231feq1i 5154 . . 3  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : { X ,  Y ,  Z } --> { A ,  B ,  C } )
33 df-tp 3454 . . . 4  |-  { X ,  Y ,  Z }  =  ( { X ,  Y }  u.  { Z } )
34 df-tp 3454 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
3533, 34feq23i 5156 . . 3  |-  ( ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
3632, 35bitri 182 . 2  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
3730, 36sylibr 132 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438    =/= wne 2255    u. cun 2997    i^i cin 2998   (/)c0 3286   {csn 3446   {cpr 3447   {ctp 3448   <.cop 3449   -->wf 5011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-tp 3454  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022
This theorem is referenced by:  ftp  5482
  Copyright terms: Public domain W3C validator