ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frel Unicode version

Theorem frel 5450
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel  |-  ( F : A --> B  ->  Rel  F )

Proof of Theorem frel
StepHypRef Expression
1 ffn 5445 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 fnrel 5391 . 2  |-  ( F  Fn  A  ->  Rel  F )
31, 2syl 14 1  |-  ( F : A --> B  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4698    Fn wfn 5285   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  fssxp  5463  fsn  5775  eluzel2  9688  hmeocnv  14894  metn0  14965
  Copyright terms: Public domain W3C validator