ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frel Unicode version

Theorem frel 5372
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel  |-  ( F : A --> B  ->  Rel  F )

Proof of Theorem frel
StepHypRef Expression
1 ffn 5367 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 fnrel 5316 . 2  |-  ( F  Fn  A  ->  Rel  F )
31, 2syl 14 1  |-  ( F : A --> B  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4633    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  fssxp  5385  fsn  5690  eluzel2  9535  hmeocnv  13892  metn0  13963
  Copyright terms: Public domain W3C validator