ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund Unicode version

Theorem ffund 5408
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffund  |-  ( ph  ->  Fun  F )

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2  |-  ( ph  ->  F : A --> B )
2 ffun 5407 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5249   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5258  df-f 5259
This theorem is referenced by:  ennnfonelemrnh  12576  ennnfonelemf1  12578  ctinfomlemom  12587  psrbaglesuppg  14169  psrelbasfun  14172  cncnp  14409  txcnp  14450  dvidlemap  14870  dvidrelem  14871  dvidsslem  14872  dvaddxx  14882  dvmulxx  14883  dvcjbr  14887  dvcj  14888  dvrecap  14892  plyaddlem1  14926  plymullem1  14927
  Copyright terms: Public domain W3C validator