ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund Unicode version

Theorem ffund 5414
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffund  |-  ( ph  ->  Fun  F )

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2  |-  ( ph  ->  F : A --> B )
2 ffun 5413 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5253   -->wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5262  df-f 5263
This theorem is referenced by:  ennnfonelemrnh  12660  ennnfonelemf1  12662  ctinfomlemom  12671  psrbaglesuppg  14306  psrelbasfun  14311  cncnp  14574  txcnp  14615  dvidlemap  15035  dvidrelem  15036  dvidsslem  15037  dvaddxx  15047  dvmulxx  15048  dvcjbr  15052  dvcj  15053  dvrecap  15057  plyaddlem1  15091  plymullem1  15092  plycoeid3  15101
  Copyright terms: Public domain W3C validator