ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund Unicode version

Theorem ffund 5411
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffund  |-  ( ph  ->  Fun  F )

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2  |-  ( ph  ->  F : A --> B )
2 ffun 5410 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5252   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5261  df-f 5262
This theorem is referenced by:  ennnfonelemrnh  12633  ennnfonelemf1  12635  ctinfomlemom  12644  psrbaglesuppg  14226  psrelbasfun  14229  cncnp  14466  txcnp  14507  dvidlemap  14927  dvidrelem  14928  dvidsslem  14929  dvaddxx  14939  dvmulxx  14940  dvcjbr  14944  dvcj  14945  dvrecap  14949  plyaddlem1  14983  plymullem1  14984  plycoeid3  14993
  Copyright terms: Public domain W3C validator