ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund Unicode version

Theorem ffund 5449
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffund  |-  ( ph  ->  Fun  F )

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2  |-  ( ph  ->  F : A --> B )
2 ffun 5448 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5284   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5293  df-f 5294
This theorem is referenced by:  swrdwrdsymbg  11155  ennnfonelemrnh  12902  ennnfonelemf1  12904  ctinfomlemom  12913  psrbaglesuppg  14549  psrelbasfun  14554  cncnp  14817  txcnp  14858  dvidlemap  15278  dvidrelem  15279  dvidsslem  15280  dvaddxx  15290  dvmulxx  15291  dvcjbr  15295  dvcj  15296  dvrecap  15300  plyaddlem1  15334  plymullem1  15335  plycoeid3  15344  uhgrfun  15788
  Copyright terms: Public domain W3C validator