| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffund | Unicode version | ||
| Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| ffund.1 |
|
| Ref | Expression |
|---|---|
| ffund |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffund.1 |
. 2
| |
| 2 | ffun 5448 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5293 df-f 5294 |
| This theorem is referenced by: swrdwrdsymbg 11155 ennnfonelemrnh 12902 ennnfonelemf1 12904 ctinfomlemom 12913 psrbaglesuppg 14549 psrelbasfun 14554 cncnp 14817 txcnp 14858 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dvaddxx 15290 dvmulxx 15291 dvcjbr 15295 dvcj 15296 dvrecap 15300 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 uhgrfun 15788 |
| Copyright terms: Public domain | W3C validator |