ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffund Unicode version

Theorem ffund 5429
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ffund.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffund  |-  ( ph  ->  Fun  F )

Proof of Theorem ffund
StepHypRef Expression
1 ffund.1 . 2  |-  ( ph  ->  F : A --> B )
2 ffun 5428 . 2  |-  ( F : A --> B  ->  Fun  F )
31, 2syl 14 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5265   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5274  df-f 5275
This theorem is referenced by:  swrdwrdsymbg  11117  ennnfonelemrnh  12787  ennnfonelemf1  12789  ctinfomlemom  12798  psrbaglesuppg  14434  psrelbasfun  14439  cncnp  14702  txcnp  14743  dvidlemap  15163  dvidrelem  15164  dvidsslem  15165  dvaddxx  15175  dvmulxx  15176  dvcjbr  15180  dvcj  15181  dvrecap  15185  plyaddlem1  15219  plymullem1  15220  plycoeid3  15229
  Copyright terms: Public domain W3C validator