| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5322 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5322 |
| This theorem is referenced by: ffnd 5474 ffun 5476 frel 5478 fdm 5479 fresin 5504 fcoi1 5506 feu 5508 f0bi 5518 fnconstg 5523 f1fn 5533 fofn 5550 dffo2 5552 fimadmfo 5557 f1ofn 5573 fdmeu 5677 feqmptd 5687 fvco3 5705 ffvelcdm 5768 dff2 5779 dffo3 5782 dffo4 5783 dffo5 5784 f1ompt 5786 ffnfv 5793 fcompt 5805 fsn2 5809 fconst2g 5854 fconstfvm 5857 fex 5868 dff13 5892 cocan1 5911 off 6231 suppssof1 6236 ofco 6237 caofref 6243 caofrss 6250 caoftrn 6251 fo1stresm 6307 fo2ndresm 6308 1stcof 6309 2ndcof 6310 fo2ndf 6373 tposf2 6414 smoiso 6448 tfrcllemssrecs 6498 tfrcllemsucaccv 6500 elmapfn 6818 mapsn 6837 pw2f1odclem 6995 mapen 7007 updjudhcoinlf 7247 updjudhcoinrg 7248 updjud 7249 omp1eomlem 7261 dfz2 9519 uzn0 9738 unirnioo 10169 dfioo2 10170 ioorebasg 10171 fzen 10239 fseq1p1m1 10290 2ffzeq 10337 fvinim0ffz 10447 frecuzrdglem 10633 frecuzrdgtcl 10634 frecuzrdg0 10635 frecuzrdgfunlem 10641 frecuzrdg0t 10644 seq3val 10682 seqvalcd 10683 ser0f 10756 ffz0hash 11055 fnfzo0hash 11057 wrdred1hash 11115 shftf 11341 uzin2 11498 rexanuz 11499 prodf1f 12054 eff2 12191 reeff1 12211 tanvalap 12219 1arithlem4 12889 1arith 12890 isgrpinv 13587 kerf1ghm 13811 cnfldadd 14526 cnfldmul 14528 cnfldplusf 14538 cnfldsub 14539 znunit 14623 lmbr2 14888 cncnpi 14902 cncnp 14904 cnpdis 14916 lmff 14923 tx1cn 14943 tx2cn 14944 upxp 14946 txcnmpt 14947 uptx 14948 xmettpos 15044 blrnps 15085 blrn 15086 xmeterval 15109 qtopbasss 15195 cnbl0 15208 cnblcld 15209 cnfldms 15210 tgioo 15228 tgqioo 15229 dvfre 15384 plyreres 15438 reeff1o 15447 pilem1 15453 ioocosf1o 15528 dfrelog 15534 mpodvdsmulf1o 15664 fsumdvdsmul 15665 012of 16357 2o01f 16358 taupi 16441 |
| Copyright terms: Public domain | W3C validator |