| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5294 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5294 |
| This theorem is referenced by: ffnd 5446 ffun 5448 frel 5450 fdm 5451 fresin 5476 fcoi1 5478 feu 5480 f0bi 5490 fnconstg 5495 f1fn 5505 fofn 5522 dffo2 5524 fimadmfo 5529 f1ofn 5545 feqmptd 5655 fvco3 5673 ffvelcdm 5736 dff2 5747 dffo3 5750 dffo4 5751 dffo5 5752 f1ompt 5754 ffnfv 5761 fcompt 5773 fsn2 5777 fconst2g 5822 fconstfvm 5825 fex 5836 dff13 5860 cocan1 5879 off 6194 suppssof1 6199 ofco 6200 caofref 6206 caofrss 6213 caoftrn 6214 fo1stresm 6270 fo2ndresm 6271 1stcof 6272 2ndcof 6273 fo2ndf 6336 tposf2 6377 smoiso 6411 tfrcllemssrecs 6461 tfrcllemsucaccv 6463 elmapfn 6781 mapsn 6800 pw2f1odclem 6956 mapen 6968 updjudhcoinlf 7208 updjudhcoinrg 7209 updjud 7210 omp1eomlem 7222 dfz2 9480 uzn0 9699 unirnioo 10130 dfioo2 10131 ioorebasg 10132 fzen 10200 fseq1p1m1 10251 2ffzeq 10298 fvinim0ffz 10407 frecuzrdglem 10593 frecuzrdgtcl 10594 frecuzrdg0 10595 frecuzrdgfunlem 10601 frecuzrdg0t 10604 seq3val 10642 seqvalcd 10643 ser0f 10716 ffz0hash 11015 fnfzo0hash 11017 wrdred1hash 11074 shftf 11256 uzin2 11413 rexanuz 11414 prodf1f 11969 eff2 12106 reeff1 12126 tanvalap 12134 1arithlem4 12804 1arith 12805 isgrpinv 13501 kerf1ghm 13725 cnfldadd 14439 cnfldmul 14441 cnfldplusf 14451 cnfldsub 14452 znunit 14536 lmbr2 14801 cncnpi 14815 cncnp 14817 cnpdis 14829 lmff 14836 tx1cn 14856 tx2cn 14857 upxp 14859 txcnmpt 14860 uptx 14861 xmettpos 14957 blrnps 14998 blrn 14999 xmeterval 15022 qtopbasss 15108 cnbl0 15121 cnblcld 15122 cnfldms 15123 tgioo 15141 tgqioo 15142 dvfre 15297 plyreres 15351 reeff1o 15360 pilem1 15366 ioocosf1o 15441 dfrelog 15447 mpodvdsmulf1o 15577 fsumdvdsmul 15578 012of 16130 2o01f 16131 taupi 16214 |
| Copyright terms: Public domain | W3C validator |