| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5276 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5276 |
| This theorem is referenced by: ffnd 5428 ffun 5430 frel 5432 fdm 5433 fresin 5456 fcoi1 5458 feu 5460 f0bi 5470 fnconstg 5475 f1fn 5485 fofn 5502 dffo2 5504 fimadmfo 5509 f1ofn 5525 feqmptd 5634 fvco3 5652 ffvelcdm 5715 dff2 5726 dffo3 5729 dffo4 5730 dffo5 5731 f1ompt 5733 ffnfv 5740 fcompt 5752 fsn2 5756 fconst2g 5801 fconstfvm 5804 fex 5815 dff13 5839 cocan1 5858 off 6173 suppssof1 6178 ofco 6179 caofref 6185 caofrss 6192 caoftrn 6193 fo1stresm 6249 fo2ndresm 6250 1stcof 6251 2ndcof 6252 fo2ndf 6315 tposf2 6356 smoiso 6390 tfrcllemssrecs 6440 tfrcllemsucaccv 6442 elmapfn 6760 mapsn 6779 pw2f1odclem 6933 mapen 6945 updjudhcoinlf 7184 updjudhcoinrg 7185 updjud 7186 omp1eomlem 7198 dfz2 9447 uzn0 9666 unirnioo 10097 dfioo2 10098 ioorebasg 10099 fzen 10167 fseq1p1m1 10218 2ffzeq 10265 fvinim0ffz 10372 frecuzrdglem 10558 frecuzrdgtcl 10559 frecuzrdg0 10560 frecuzrdgfunlem 10566 frecuzrdg0t 10569 seq3val 10607 seqvalcd 10608 ser0f 10681 ffz0hash 10980 fnfzo0hash 10982 wrdred1hash 11039 shftf 11174 uzin2 11331 rexanuz 11332 prodf1f 11887 eff2 12024 reeff1 12044 tanvalap 12052 1arithlem4 12722 1arith 12723 isgrpinv 13419 kerf1ghm 13643 cnfldadd 14357 cnfldmul 14359 cnfldplusf 14369 cnfldsub 14370 znunit 14454 lmbr2 14719 cncnpi 14733 cncnp 14735 cnpdis 14747 lmff 14754 tx1cn 14774 tx2cn 14775 upxp 14777 txcnmpt 14778 uptx 14779 xmettpos 14875 blrnps 14916 blrn 14917 xmeterval 14940 qtopbasss 15026 cnbl0 15039 cnblcld 15040 cnfldms 15041 tgioo 15059 tgqioo 15060 dvfre 15215 plyreres 15269 reeff1o 15278 pilem1 15284 ioocosf1o 15359 dfrelog 15365 mpodvdsmulf1o 15495 fsumdvdsmul 15496 012of 15967 2o01f 15968 taupi 16049 |
| Copyright terms: Public domain | W3C validator |