| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffn | Unicode version | ||
| Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5275 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5275 |
| This theorem is referenced by: ffnd 5426 ffun 5428 frel 5430 fdm 5431 fresin 5454 fcoi1 5456 feu 5458 f0bi 5468 fnconstg 5473 f1fn 5483 fofn 5500 dffo2 5502 fimadmfo 5507 f1ofn 5523 feqmptd 5632 fvco3 5650 ffvelcdm 5713 dff2 5724 dffo3 5727 dffo4 5728 dffo5 5729 f1ompt 5731 ffnfv 5738 fcompt 5750 fsn2 5754 fconst2g 5799 fconstfvm 5802 fex 5813 dff13 5837 cocan1 5856 off 6171 suppssof1 6176 ofco 6177 caofref 6183 caofrss 6190 caoftrn 6191 fo1stresm 6247 fo2ndresm 6248 1stcof 6249 2ndcof 6250 fo2ndf 6313 tposf2 6354 smoiso 6388 tfrcllemssrecs 6438 tfrcllemsucaccv 6440 elmapfn 6758 mapsn 6777 pw2f1odclem 6931 mapen 6943 updjudhcoinlf 7182 updjudhcoinrg 7183 updjud 7184 omp1eomlem 7196 dfz2 9445 uzn0 9664 unirnioo 10095 dfioo2 10096 ioorebasg 10097 fzen 10165 fseq1p1m1 10216 2ffzeq 10263 fvinim0ffz 10370 frecuzrdglem 10556 frecuzrdgtcl 10557 frecuzrdg0 10558 frecuzrdgfunlem 10564 frecuzrdg0t 10567 seq3val 10605 seqvalcd 10606 ser0f 10679 ffz0hash 10978 fnfzo0hash 10980 wrdred1hash 11037 shftf 11141 uzin2 11298 rexanuz 11299 prodf1f 11854 eff2 11991 reeff1 12011 tanvalap 12019 1arithlem4 12689 1arith 12690 isgrpinv 13386 kerf1ghm 13610 cnfldadd 14324 cnfldmul 14326 cnfldplusf 14336 cnfldsub 14337 znunit 14421 lmbr2 14686 cncnpi 14700 cncnp 14702 cnpdis 14714 lmff 14721 tx1cn 14741 tx2cn 14742 upxp 14744 txcnmpt 14745 uptx 14746 xmettpos 14842 blrnps 14883 blrn 14884 xmeterval 14907 qtopbasss 14993 cnbl0 15006 cnblcld 15007 cnfldms 15008 tgioo 15026 tgqioo 15027 dvfre 15182 plyreres 15236 reeff1o 15245 pilem1 15251 ioocosf1o 15326 dfrelog 15332 mpodvdsmulf1o 15462 fsumdvdsmul 15463 012of 15930 2o01f 15931 taupi 16012 |
| Copyright terms: Public domain | W3C validator |