![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffn | Unicode version |
Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
ffn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5258 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5258 |
This theorem is referenced by: ffnd 5404 ffun 5406 frel 5408 fdm 5409 fresin 5432 fcoi1 5434 feu 5436 f0bi 5446 fnconstg 5451 f1fn 5461 fofn 5478 dffo2 5480 fimadmfo 5485 f1ofn 5501 feqmptd 5610 fvco3 5628 ffvelcdm 5691 dff2 5702 dffo3 5705 dffo4 5706 dffo5 5707 f1ompt 5709 ffnfv 5716 fcompt 5728 fsn2 5732 fconst2g 5773 fconstfvm 5776 fex 5787 dff13 5811 cocan1 5830 off 6143 suppssof1 6148 ofco 6149 caofref 6154 caofrss 6157 caoftrn 6158 fo1stresm 6214 fo2ndresm 6215 1stcof 6216 2ndcof 6217 fo2ndf 6280 tposf2 6321 smoiso 6355 tfrcllemssrecs 6405 tfrcllemsucaccv 6407 elmapfn 6725 mapsn 6744 pw2f1odclem 6890 mapen 6902 updjudhcoinlf 7139 updjudhcoinrg 7140 updjud 7141 omp1eomlem 7153 dfz2 9389 uzn0 9608 unirnioo 10039 dfioo2 10040 ioorebasg 10041 fzen 10109 fseq1p1m1 10160 2ffzeq 10207 fvinim0ffz 10308 frecuzrdglem 10482 frecuzrdgtcl 10483 frecuzrdg0 10484 frecuzrdgfunlem 10490 frecuzrdg0t 10493 seq3val 10531 seqvalcd 10532 ser0f 10605 ffz0hash 10904 fnfzo0hash 10906 wrdred1hash 10957 shftf 10974 uzin2 11131 rexanuz 11132 prodf1f 11686 eff2 11823 reeff1 11843 tanvalap 11851 1arithlem4 12504 1arith 12505 isgrpinv 13126 kerf1ghm 13344 mpocnfldadd 14053 mpocnfldmul 14055 cnfldplusf 14062 cnfldsub 14063 znunit 14147 lmbr2 14382 cncnpi 14396 cncnp 14398 cnpdis 14410 lmff 14417 tx1cn 14437 tx2cn 14438 upxp 14440 txcnmpt 14441 uptx 14442 xmettpos 14538 blrnps 14579 blrn 14580 xmeterval 14603 qtopbasss 14689 cnbl0 14702 cnblcld 14703 tgioo 14714 tgqioo 14715 dvfre 14859 reeff1o 14908 pilem1 14914 ioocosf1o 14989 dfrelog 14995 012of 15486 2o01f 15487 taupi 15563 |
Copyright terms: Public domain | W3C validator |