![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffn | Unicode version |
Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
ffn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5259 |
This theorem is referenced by: ffnd 5405 ffun 5407 frel 5409 fdm 5410 fresin 5433 fcoi1 5435 feu 5437 f0bi 5447 fnconstg 5452 f1fn 5462 fofn 5479 dffo2 5481 fimadmfo 5486 f1ofn 5502 feqmptd 5611 fvco3 5629 ffvelcdm 5692 dff2 5703 dffo3 5706 dffo4 5707 dffo5 5708 f1ompt 5710 ffnfv 5717 fcompt 5729 fsn2 5733 fconst2g 5774 fconstfvm 5777 fex 5788 dff13 5812 cocan1 5831 off 6145 suppssof1 6150 ofco 6151 caofref 6156 caofrss 6159 caoftrn 6160 fo1stresm 6216 fo2ndresm 6217 1stcof 6218 2ndcof 6219 fo2ndf 6282 tposf2 6323 smoiso 6357 tfrcllemssrecs 6407 tfrcllemsucaccv 6409 elmapfn 6727 mapsn 6746 pw2f1odclem 6892 mapen 6904 updjudhcoinlf 7141 updjudhcoinrg 7142 updjud 7143 omp1eomlem 7155 dfz2 9392 uzn0 9611 unirnioo 10042 dfioo2 10043 ioorebasg 10044 fzen 10112 fseq1p1m1 10163 2ffzeq 10210 fvinim0ffz 10311 frecuzrdglem 10485 frecuzrdgtcl 10486 frecuzrdg0 10487 frecuzrdgfunlem 10493 frecuzrdg0t 10496 seq3val 10534 seqvalcd 10535 ser0f 10608 ffz0hash 10907 fnfzo0hash 10909 wrdred1hash 10960 shftf 10977 uzin2 11134 rexanuz 11135 prodf1f 11689 eff2 11826 reeff1 11846 tanvalap 11854 1arithlem4 12507 1arith 12508 isgrpinv 13129 kerf1ghm 13347 cnfldadd 14061 cnfldmul 14063 cnfldplusf 14073 cnfldsub 14074 znunit 14158 lmbr2 14393 cncnpi 14407 cncnp 14409 cnpdis 14421 lmff 14428 tx1cn 14448 tx2cn 14449 upxp 14451 txcnmpt 14452 uptx 14453 xmettpos 14549 blrnps 14590 blrn 14591 xmeterval 14614 qtopbasss 14700 cnbl0 14713 cnblcld 14714 cnfldms 14715 tgioo 14733 tgqioo 14734 dvfre 14889 plyreres 14942 reeff1o 14949 pilem1 14955 ioocosf1o 15030 dfrelog 15036 012of 15556 2o01f 15557 taupi 15633 |
Copyright terms: Public domain | W3C validator |