ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp Unicode version

Theorem fssxp 5442
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5429 . . 3  |-  ( F : A --> B  ->  Rel  F )
2 relssdmrn 5202 . . 3  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . 2  |-  ( F : A --> B  ->  F  C_  ( dom  F  X.  ran  F ) )
4 fdm 5430 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
5 eqimss 3246 . . . 4  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
64, 5syl 14 . . 3  |-  ( F : A --> B  ->  dom  F  C_  A )
7 frn 5433 . . 3  |-  ( F : A --> B  ->  ran  F  C_  B )
8 xpss12 4781 . . 3  |-  ( ( dom  F  C_  A  /\  ran  F  C_  B
)  ->  ( dom  F  X.  ran  F ) 
C_  ( A  X.  B ) )
96, 7, 8syl2anc 411 . 2  |-  ( F : A --> B  -> 
( dom  F  X.  ran  F )  C_  ( A  X.  B ) )
103, 9sstrd 3202 1  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    C_ wss 3165    X. cxp 4672   dom cdm 4674   ran crn 4675   Rel wrel 4679   -->wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274
This theorem is referenced by:  fex2  5443  funssxp  5444  opelf  5446  fabexg  5462  dff2  5723  dff3im  5724  f2ndf  6311  f1o2ndf1  6313  tfrlemibfn  6413  tfr1onlembfn  6429  tfrcllembfn  6442  mapex  6740  uniixp  6807  ixxex  10020  pw1nct  15873
  Copyright terms: Public domain W3C validator