| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fssxp | Unicode version | ||
| Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| fssxp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frel 5412 | 
. . 3
 | |
| 2 | relssdmrn 5190 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | fdm 5413 | 
. . . 4
 | |
| 5 | eqimss 3237 | 
. . . 4
 | |
| 6 | 4, 5 | syl 14 | 
. . 3
 | 
| 7 | frn 5416 | 
. . 3
 | |
| 8 | xpss12 4770 | 
. . 3
 | |
| 9 | 6, 7, 8 | syl2anc 411 | 
. 2
 | 
| 10 | 3, 9 | sstrd 3193 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: fex2 5426 funssxp 5427 opelf 5429 fabexg 5445 dff2 5706 dff3im 5707 f2ndf 6284 f1o2ndf1 6286 tfrlemibfn 6386 tfr1onlembfn 6402 tfrcllembfn 6415 mapex 6713 uniixp 6780 ixxex 9974 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |