ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp Unicode version

Theorem fssxp 5421
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5408 . . 3  |-  ( F : A --> B  ->  Rel  F )
2 relssdmrn 5186 . . 3  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . 2  |-  ( F : A --> B  ->  F  C_  ( dom  F  X.  ran  F ) )
4 fdm 5409 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
5 eqimss 3233 . . . 4  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
64, 5syl 14 . . 3  |-  ( F : A --> B  ->  dom  F  C_  A )
7 frn 5412 . . 3  |-  ( F : A --> B  ->  ran  F  C_  B )
8 xpss12 4766 . . 3  |-  ( ( dom  F  C_  A  /\  ran  F  C_  B
)  ->  ( dom  F  X.  ran  F ) 
C_  ( A  X.  B ) )
96, 7, 8syl2anc 411 . 2  |-  ( F : A --> B  -> 
( dom  F  X.  ran  F )  C_  ( A  X.  B ) )
103, 9sstrd 3189 1  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3153    X. cxp 4657   dom cdm 4659   ran crn 4660   Rel wrel 4664   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  fex2  5422  funssxp  5423  opelf  5425  fabexg  5441  dff2  5702  dff3im  5703  f2ndf  6279  f1o2ndf1  6281  tfrlemibfn  6381  tfr1onlembfn  6397  tfrcllembfn  6410  mapex  6708  uniixp  6775  ixxex  9965  pw1nct  15493
  Copyright terms: Public domain W3C validator