ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp Unicode version

Theorem fssxp 5425
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5412 . . 3  |-  ( F : A --> B  ->  Rel  F )
2 relssdmrn 5190 . . 3  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . 2  |-  ( F : A --> B  ->  F  C_  ( dom  F  X.  ran  F ) )
4 fdm 5413 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
5 eqimss 3237 . . . 4  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
64, 5syl 14 . . 3  |-  ( F : A --> B  ->  dom  F  C_  A )
7 frn 5416 . . 3  |-  ( F : A --> B  ->  ran  F  C_  B )
8 xpss12 4770 . . 3  |-  ( ( dom  F  C_  A  /\  ran  F  C_  B
)  ->  ( dom  F  X.  ran  F ) 
C_  ( A  X.  B ) )
96, 7, 8syl2anc 411 . 2  |-  ( F : A --> B  -> 
( dom  F  X.  ran  F )  C_  ( A  X.  B ) )
103, 9sstrd 3193 1  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157    X. cxp 4661   dom cdm 4663   ran crn 4664   Rel wrel 4668   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262
This theorem is referenced by:  fex2  5426  funssxp  5427  opelf  5429  fabexg  5445  dff2  5706  dff3im  5707  f2ndf  6284  f1o2ndf1  6286  tfrlemibfn  6386  tfr1onlembfn  6402  tfrcllembfn  6415  mapex  6713  uniixp  6780  ixxex  9974  pw1nct  15647
  Copyright terms: Public domain W3C validator