Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fssxp | Unicode version |
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fssxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frel 5342 | . . 3 | |
2 | relssdmrn 5124 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | fdm 5343 | . . . 4 | |
5 | eqimss 3196 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | frn 5346 | . . 3 | |
8 | xpss12 4711 | . . 3 | |
9 | 6, 7, 8 | syl2anc 409 | . 2 |
10 | 3, 9 | sstrd 3152 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wss 3116 cxp 4602 cdm 4604 crn 4605 wrel 4609 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: fex2 5356 funssxp 5357 opelf 5359 fabexg 5375 dff2 5629 dff3im 5630 f2ndf 6194 f1o2ndf1 6196 tfrlemibfn 6296 tfr1onlembfn 6312 tfrcllembfn 6325 mapex 6620 uniixp 6687 ixxex 9835 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |