ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssxp Unicode version

Theorem fssxp 5453
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )

Proof of Theorem fssxp
StepHypRef Expression
1 frel 5440 . . 3  |-  ( F : A --> B  ->  Rel  F )
2 relssdmrn 5212 . . 3  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . 2  |-  ( F : A --> B  ->  F  C_  ( dom  F  X.  ran  F ) )
4 fdm 5441 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
5 eqimss 3251 . . . 4  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
64, 5syl 14 . . 3  |-  ( F : A --> B  ->  dom  F  C_  A )
7 frn 5444 . . 3  |-  ( F : A --> B  ->  ran  F  C_  B )
8 xpss12 4790 . . 3  |-  ( ( dom  F  C_  A  /\  ran  F  C_  B
)  ->  ( dom  F  X.  ran  F ) 
C_  ( A  X.  B ) )
96, 7, 8syl2anc 411 . 2  |-  ( F : A --> B  -> 
( dom  F  X.  ran  F )  C_  ( A  X.  B ) )
103, 9sstrd 3207 1  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3170    X. cxp 4681   dom cdm 4683   ran crn 4684   Rel wrel 4688   -->wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284
This theorem is referenced by:  fex2  5454  funssxp  5455  opelf  5458  fabexg  5475  dff2  5737  dff3im  5738  f2ndf  6325  f1o2ndf1  6327  tfrlemibfn  6427  tfr1onlembfn  6443  tfrcllembfn  6456  mapex  6754  uniixp  6821  ixxex  10041  pw1nct  16081
  Copyright terms: Public domain W3C validator