ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn Unicode version

Theorem fsn 5453
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
fsn.1  |-  A  e. 
_V
fsn.2  |-  B  e. 
_V
Assertion
Ref Expression
fsn  |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )

Proof of Theorem fsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelf 5167 . . . . . . . 8  |-  ( ( F : { A }
--> { B }  /\  <.
x ,  y >.  e.  F )  ->  (
x  e.  { A }  /\  y  e.  { B } ) )
2 velsn 3458 . . . . . . . . 9  |-  ( x  e.  { A }  <->  x  =  A )
3 velsn 3458 . . . . . . . . 9  |-  ( y  e.  { B }  <->  y  =  B )
42, 3anbi12i 448 . . . . . . . 8  |-  ( ( x  e.  { A }  /\  y  e.  { B } )  <->  ( x  =  A  /\  y  =  B ) )
51, 4sylib 120 . . . . . . 7  |-  ( ( F : { A }
--> { B }  /\  <.
x ,  y >.  e.  F )  ->  (
x  =  A  /\  y  =  B )
)
65ex 113 . . . . . 6  |-  ( F : { A } --> { B }  ->  ( <. x ,  y >.  e.  F  ->  ( x  =  A  /\  y  =  B ) ) )
7 fsn.1 . . . . . . . . . 10  |-  A  e. 
_V
87snid 3470 . . . . . . . . 9  |-  A  e. 
{ A }
9 feu 5177 . . . . . . . . 9  |-  ( ( F : { A }
--> { B }  /\  A  e.  { A } )  ->  E! y  e.  { B } <. A ,  y
>.  e.  F )
108, 9mpan2 416 . . . . . . . 8  |-  ( F : { A } --> { B }  ->  E! y  e.  { B } <. A ,  y
>.  e.  F )
113anbi1i 446 . . . . . . . . . . 11  |-  ( ( y  e.  { B }  /\  <. A ,  y
>.  e.  F )  <->  ( y  =  B  /\  <. A , 
y >.  e.  F ) )
12 opeq2 3618 . . . . . . . . . . . . . 14  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
1312eleq1d 2156 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  F  <->  <. A ,  B >.  e.  F ) )
1413pm5.32i 442 . . . . . . . . . . . 12  |-  ( ( y  =  B  /\  <. A ,  y >.  e.  F )  <->  ( y  =  B  /\  <. A ,  B >.  e.  F ) )
15 ancom 262 . . . . . . . . . . . 12  |-  ( (
<. A ,  B >.  e.  F  /\  y  =  B )  <->  ( y  =  B  /\  <. A ,  B >.  e.  F ) )
1614, 15bitr4i 185 . . . . . . . . . . 11  |-  ( ( y  =  B  /\  <. A ,  y >.  e.  F )  <->  ( <. A ,  B >.  e.  F  /\  y  =  B
) )
1711, 16bitr2i 183 . . . . . . . . . 10  |-  ( (
<. A ,  B >.  e.  F  /\  y  =  B )  <->  ( y  e.  { B }  /\  <. A ,  y >.  e.  F ) )
1817eubii 1957 . . . . . . . . 9  |-  ( E! y ( <. A ,  B >.  e.  F  /\  y  =  B )  <->  E! y ( y  e. 
{ B }  /\  <. A ,  y >.  e.  F ) )
19 fsn.2 . . . . . . . . . . . 12  |-  B  e. 
_V
2019eueq1 2785 . . . . . . . . . . 11  |-  E! y  y  =  B
2120biantru 296 . . . . . . . . . 10  |-  ( <. A ,  B >.  e.  F  <->  ( <. A ,  B >.  e.  F  /\  E! y  y  =  B ) )
22 euanv 2005 . . . . . . . . . 10  |-  ( E! y ( <. A ,  B >.  e.  F  /\  y  =  B )  <->  (
<. A ,  B >.  e.  F  /\  E! y  y  =  B ) )
2321, 22bitr4i 185 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  F  <->  E! y ( <. A ,  B >.  e.  F  /\  y  =  B ) )
24 df-reu 2366 . . . . . . . . 9  |-  ( E! y  e.  { B } <. A ,  y
>.  e.  F  <->  E! y
( y  e.  { B }  /\  <. A , 
y >.  e.  F ) )
2518, 23, 243bitr4i 210 . . . . . . . 8  |-  ( <. A ,  B >.  e.  F  <->  E! y  e.  { B } <. A ,  y
>.  e.  F )
2610, 25sylibr 132 . . . . . . 7  |-  ( F : { A } --> { B }  ->  <. A ,  B >.  e.  F )
27 opeq12 3619 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
2827eleq1d 2156 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( <. x ,  y
>.  e.  F  <->  <. A ,  B >.  e.  F ) )
2926, 28syl5ibrcom 155 . . . . . 6  |-  ( F : { A } --> { B }  ->  (
( x  =  A  /\  y  =  B )  ->  <. x ,  y >.  e.  F
) )
306, 29impbid 127 . . . . 5  |-  ( F : { A } --> { B }  ->  ( <. x ,  y >.  e.  F  <->  ( x  =  A  /\  y  =  B ) ) )
31 vex 2622 . . . . . . . 8  |-  x  e. 
_V
32 vex 2622 . . . . . . . 8  |-  y  e. 
_V
3331, 32opex 4047 . . . . . . 7  |-  <. x ,  y >.  e.  _V
3433elsn 3457 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
357, 19opth2 4058 . . . . . 6  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
3634, 35bitr2i 183 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  <->  <.
x ,  y >.  e.  { <. A ,  B >. } )
3730, 36syl6bb 194 . . . 4  |-  ( F : { A } --> { B }  ->  ( <. x ,  y >.  e.  F  <->  <. x ,  y
>.  e.  { <. A ,  B >. } ) )
3837alrimivv 1803 . . 3  |-  ( F : { A } --> { B }  ->  A. x A. y ( <. x ,  y >.  e.  F  <->  <.
x ,  y >.  e.  { <. A ,  B >. } ) )
39 frel 5151 . . . 4  |-  ( F : { A } --> { B }  ->  Rel  F )
407, 19relsnop 4532 . . . 4  |-  Rel  { <. A ,  B >. }
41 eqrel 4515 . . . 4  |-  ( ( Rel  F  /\  Rel  {
<. A ,  B >. } )  ->  ( F  =  { <. A ,  B >. }  <->  A. x A. y
( <. x ,  y
>.  e.  F  <->  <. x ,  y >.  e.  { <. A ,  B >. } ) ) )
4239, 40, 41sylancl 404 . . 3  |-  ( F : { A } --> { B }  ->  ( F  =  { <. A ,  B >. }  <->  A. x A. y ( <. x ,  y >.  e.  F  <->  <.
x ,  y >.  e.  { <. A ,  B >. } ) ) )
4338, 42mpbird 165 . 2  |-  ( F : { A } --> { B }  ->  F  =  { <. A ,  B >. } )
447, 19f1osn 5277 . . . 4  |-  { <. A ,  B >. } : { A } -1-1-onto-> { B }
45 f1oeq1 5228 . . . 4  |-  ( F  =  { <. A ,  B >. }  ->  ( F : { A } -1-1-onto-> { B }  <->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } ) )
4644, 45mpbiri 166 . . 3  |-  ( F  =  { <. A ,  B >. }  ->  F : { A } -1-1-onto-> { B } )
47 f1of 5237 . . 3  |-  ( F : { A } -1-1-onto-> { B }  ->  F : { A } --> { B } )
4846, 47syl 14 . 2  |-  ( F  =  { <. A ,  B >. }  ->  F : { A } --> { B } )
4943, 48impbii 124 1  |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   A.wal 1287    = wceq 1289    e. wcel 1438   E!weu 1948   E!wreu 2361   _Vcvv 2619   {csn 3441   <.cop 3444   Rel wrel 4433   -->wf 4998   -1-1-onto->wf1o 5001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009
This theorem is referenced by:  fsng  5454  mapsn  6427
  Copyright terms: Public domain W3C validator