Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsn | Unicode version |
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
fsn.1 | |
fsn.2 |
Ref | Expression |
---|---|
fsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelf 5369 | . . . . . . . 8 | |
2 | velsn 3600 | . . . . . . . . 9 | |
3 | velsn 3600 | . . . . . . . . 9 | |
4 | 2, 3 | anbi12i 457 | . . . . . . . 8 |
5 | 1, 4 | sylib 121 | . . . . . . 7 |
6 | 5 | ex 114 | . . . . . 6 |
7 | fsn.1 | . . . . . . . . . 10 | |
8 | 7 | snid 3614 | . . . . . . . . 9 |
9 | feu 5380 | . . . . . . . . 9 | |
10 | 8, 9 | mpan2 423 | . . . . . . . 8 |
11 | 3 | anbi1i 455 | . . . . . . . . . . 11 |
12 | opeq2 3766 | . . . . . . . . . . . . . 14 | |
13 | 12 | eleq1d 2239 | . . . . . . . . . . . . 13 |
14 | 13 | pm5.32i 451 | . . . . . . . . . . . 12 |
15 | ancom 264 | . . . . . . . . . . . 12 | |
16 | 14, 15 | bitr4i 186 | . . . . . . . . . . 11 |
17 | 11, 16 | bitr2i 184 | . . . . . . . . . 10 |
18 | 17 | eubii 2028 | . . . . . . . . 9 |
19 | fsn.2 | . . . . . . . . . . . 12 | |
20 | 19 | eueq1 2902 | . . . . . . . . . . 11 |
21 | 20 | biantru 300 | . . . . . . . . . 10 |
22 | euanv 2076 | . . . . . . . . . 10 | |
23 | 21, 22 | bitr4i 186 | . . . . . . . . 9 |
24 | df-reu 2455 | . . . . . . . . 9 | |
25 | 18, 23, 24 | 3bitr4i 211 | . . . . . . . 8 |
26 | 10, 25 | sylibr 133 | . . . . . . 7 |
27 | opeq12 3767 | . . . . . . . 8 | |
28 | 27 | eleq1d 2239 | . . . . . . 7 |
29 | 26, 28 | syl5ibrcom 156 | . . . . . 6 |
30 | 6, 29 | impbid 128 | . . . . 5 |
31 | vex 2733 | . . . . . . . 8 | |
32 | vex 2733 | . . . . . . . 8 | |
33 | 31, 32 | opex 4214 | . . . . . . 7 |
34 | 33 | elsn 3599 | . . . . . 6 |
35 | 7, 19 | opth2 4225 | . . . . . 6 |
36 | 34, 35 | bitr2i 184 | . . . . 5 |
37 | 30, 36 | bitrdi 195 | . . . 4 |
38 | 37 | alrimivv 1868 | . . 3 |
39 | frel 5352 | . . . 4 | |
40 | 7, 19 | relsnop 4717 | . . . 4 |
41 | eqrel 4700 | . . . 4 | |
42 | 39, 40, 41 | sylancl 411 | . . 3 |
43 | 38, 42 | mpbird 166 | . 2 |
44 | 7, 19 | f1osn 5482 | . . . 4 |
45 | f1oeq1 5431 | . . . 4 | |
46 | 44, 45 | mpbiri 167 | . . 3 |
47 | f1of 5442 | . . 3 | |
48 | 46, 47 | syl 14 | . 2 |
49 | 43, 48 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1346 wceq 1348 weu 2019 wcel 2141 wreu 2450 cvv 2730 csn 3583 cop 3586 wrel 4616 wf 5194 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: fsng 5669 mapsn 6668 |
Copyright terms: Public domain | W3C validator |