| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn | Unicode version | ||
| Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| fsn.1 |
|
| fsn.2 |
|
| Ref | Expression |
|---|---|
| fsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelf 5432 |
. . . . . . . 8
| |
| 2 | velsn 3640 |
. . . . . . . . 9
| |
| 3 | velsn 3640 |
. . . . . . . . 9
| |
| 4 | 2, 3 | anbi12i 460 |
. . . . . . . 8
|
| 5 | 1, 4 | sylib 122 |
. . . . . . 7
|
| 6 | 5 | ex 115 |
. . . . . 6
|
| 7 | fsn.1 |
. . . . . . . . . 10
| |
| 8 | 7 | snid 3654 |
. . . . . . . . 9
|
| 9 | feu 5443 |
. . . . . . . . 9
| |
| 10 | 8, 9 | mpan2 425 |
. . . . . . . 8
|
| 11 | 3 | anbi1i 458 |
. . . . . . . . . . 11
|
| 12 | opeq2 3810 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eleq1d 2265 |
. . . . . . . . . . . . 13
|
| 14 | 13 | pm5.32i 454 |
. . . . . . . . . . . 12
|
| 15 | ancom 266 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | bitr4i 187 |
. . . . . . . . . . 11
|
| 17 | 11, 16 | bitr2i 185 |
. . . . . . . . . 10
|
| 18 | 17 | eubii 2054 |
. . . . . . . . 9
|
| 19 | fsn.2 |
. . . . . . . . . . . 12
| |
| 20 | 19 | eueq1 2936 |
. . . . . . . . . . 11
|
| 21 | 20 | biantru 302 |
. . . . . . . . . 10
|
| 22 | euanv 2102 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bitr4i 187 |
. . . . . . . . 9
|
| 24 | df-reu 2482 |
. . . . . . . . 9
| |
| 25 | 18, 23, 24 | 3bitr4i 212 |
. . . . . . . 8
|
| 26 | 10, 25 | sylibr 134 |
. . . . . . 7
|
| 27 | opeq12 3811 |
. . . . . . . 8
| |
| 28 | 27 | eleq1d 2265 |
. . . . . . 7
|
| 29 | 26, 28 | syl5ibrcom 157 |
. . . . . 6
|
| 30 | 6, 29 | impbid 129 |
. . . . 5
|
| 31 | vex 2766 |
. . . . . . . 8
| |
| 32 | vex 2766 |
. . . . . . . 8
| |
| 33 | 31, 32 | opex 4263 |
. . . . . . 7
|
| 34 | 33 | elsn 3639 |
. . . . . 6
|
| 35 | 7, 19 | opth2 4274 |
. . . . . 6
|
| 36 | 34, 35 | bitr2i 185 |
. . . . 5
|
| 37 | 30, 36 | bitrdi 196 |
. . . 4
|
| 38 | 37 | alrimivv 1889 |
. . 3
|
| 39 | frel 5415 |
. . . 4
| |
| 40 | 7, 19 | relsnop 4770 |
. . . 4
|
| 41 | eqrel 4753 |
. . . 4
| |
| 42 | 39, 40, 41 | sylancl 413 |
. . 3
|
| 43 | 38, 42 | mpbird 167 |
. 2
|
| 44 | 7, 19 | f1osn 5547 |
. . . 4
|
| 45 | f1oeq1 5495 |
. . . 4
| |
| 46 | 44, 45 | mpbiri 168 |
. . 3
|
| 47 | f1of 5507 |
. . 3
| |
| 48 | 46, 47 | syl 14 |
. 2
|
| 49 | 43, 48 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: fsng 5738 mapsn 6758 |
| Copyright terms: Public domain | W3C validator |