Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsn | Unicode version |
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
fsn.1 | |
fsn.2 |
Ref | Expression |
---|---|
fsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelf 5359 | . . . . . . . 8 | |
2 | velsn 3593 | . . . . . . . . 9 | |
3 | velsn 3593 | . . . . . . . . 9 | |
4 | 2, 3 | anbi12i 456 | . . . . . . . 8 |
5 | 1, 4 | sylib 121 | . . . . . . 7 |
6 | 5 | ex 114 | . . . . . 6 |
7 | fsn.1 | . . . . . . . . . 10 | |
8 | 7 | snid 3607 | . . . . . . . . 9 |
9 | feu 5370 | . . . . . . . . 9 | |
10 | 8, 9 | mpan2 422 | . . . . . . . 8 |
11 | 3 | anbi1i 454 | . . . . . . . . . . 11 |
12 | opeq2 3759 | . . . . . . . . . . . . . 14 | |
13 | 12 | eleq1d 2235 | . . . . . . . . . . . . 13 |
14 | 13 | pm5.32i 450 | . . . . . . . . . . . 12 |
15 | ancom 264 | . . . . . . . . . . . 12 | |
16 | 14, 15 | bitr4i 186 | . . . . . . . . . . 11 |
17 | 11, 16 | bitr2i 184 | . . . . . . . . . 10 |
18 | 17 | eubii 2023 | . . . . . . . . 9 |
19 | fsn.2 | . . . . . . . . . . . 12 | |
20 | 19 | eueq1 2898 | . . . . . . . . . . 11 |
21 | 20 | biantru 300 | . . . . . . . . . 10 |
22 | euanv 2071 | . . . . . . . . . 10 | |
23 | 21, 22 | bitr4i 186 | . . . . . . . . 9 |
24 | df-reu 2451 | . . . . . . . . 9 | |
25 | 18, 23, 24 | 3bitr4i 211 | . . . . . . . 8 |
26 | 10, 25 | sylibr 133 | . . . . . . 7 |
27 | opeq12 3760 | . . . . . . . 8 | |
28 | 27 | eleq1d 2235 | . . . . . . 7 |
29 | 26, 28 | syl5ibrcom 156 | . . . . . 6 |
30 | 6, 29 | impbid 128 | . . . . 5 |
31 | vex 2729 | . . . . . . . 8 | |
32 | vex 2729 | . . . . . . . 8 | |
33 | 31, 32 | opex 4207 | . . . . . . 7 |
34 | 33 | elsn 3592 | . . . . . 6 |
35 | 7, 19 | opth2 4218 | . . . . . 6 |
36 | 34, 35 | bitr2i 184 | . . . . 5 |
37 | 30, 36 | bitrdi 195 | . . . 4 |
38 | 37 | alrimivv 1863 | . . 3 |
39 | frel 5342 | . . . 4 | |
40 | 7, 19 | relsnop 4710 | . . . 4 |
41 | eqrel 4693 | . . . 4 | |
42 | 39, 40, 41 | sylancl 410 | . . 3 |
43 | 38, 42 | mpbird 166 | . 2 |
44 | 7, 19 | f1osn 5472 | . . . 4 |
45 | f1oeq1 5421 | . . . 4 | |
46 | 44, 45 | mpbiri 167 | . . 3 |
47 | f1of 5432 | . . 3 | |
48 | 46, 47 | syl 14 | . 2 |
49 | 43, 48 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wal 1341 wceq 1343 weu 2014 wcel 2136 wreu 2446 cvv 2726 csn 3576 cop 3579 wrel 4609 wf 5184 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: fsng 5658 mapsn 6656 |
Copyright terms: Public domain | W3C validator |