| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn | Unicode version | ||
| Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| fsn.1 |
|
| fsn.2 |
|
| Ref | Expression |
|---|---|
| fsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelf 5496 |
. . . . . . . 8
| |
| 2 | velsn 3683 |
. . . . . . . . 9
| |
| 3 | velsn 3683 |
. . . . . . . . 9
| |
| 4 | 2, 3 | anbi12i 460 |
. . . . . . . 8
|
| 5 | 1, 4 | sylib 122 |
. . . . . . 7
|
| 6 | 5 | ex 115 |
. . . . . 6
|
| 7 | fsn.1 |
. . . . . . . . . 10
| |
| 8 | 7 | snid 3697 |
. . . . . . . . 9
|
| 9 | feu 5508 |
. . . . . . . . 9
| |
| 10 | 8, 9 | mpan2 425 |
. . . . . . . 8
|
| 11 | 3 | anbi1i 458 |
. . . . . . . . . . 11
|
| 12 | opeq2 3858 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | eleq1d 2298 |
. . . . . . . . . . . . 13
|
| 14 | 13 | pm5.32i 454 |
. . . . . . . . . . . 12
|
| 15 | ancom 266 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | bitr4i 187 |
. . . . . . . . . . 11
|
| 17 | 11, 16 | bitr2i 185 |
. . . . . . . . . 10
|
| 18 | 17 | eubii 2086 |
. . . . . . . . 9
|
| 19 | fsn.2 |
. . . . . . . . . . . 12
| |
| 20 | 19 | eueq1 2975 |
. . . . . . . . . . 11
|
| 21 | 20 | biantru 302 |
. . . . . . . . . 10
|
| 22 | euanv 2135 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bitr4i 187 |
. . . . . . . . 9
|
| 24 | df-reu 2515 |
. . . . . . . . 9
| |
| 25 | 18, 23, 24 | 3bitr4i 212 |
. . . . . . . 8
|
| 26 | 10, 25 | sylibr 134 |
. . . . . . 7
|
| 27 | opeq12 3859 |
. . . . . . . 8
| |
| 28 | 27 | eleq1d 2298 |
. . . . . . 7
|
| 29 | 26, 28 | syl5ibrcom 157 |
. . . . . 6
|
| 30 | 6, 29 | impbid 129 |
. . . . 5
|
| 31 | vex 2802 |
. . . . . . . 8
| |
| 32 | vex 2802 |
. . . . . . . 8
| |
| 33 | 31, 32 | opex 4315 |
. . . . . . 7
|
| 34 | 33 | elsn 3682 |
. . . . . 6
|
| 35 | 7, 19 | opth2 4326 |
. . . . . 6
|
| 36 | 34, 35 | bitr2i 185 |
. . . . 5
|
| 37 | 30, 36 | bitrdi 196 |
. . . 4
|
| 38 | 37 | alrimivv 1921 |
. . 3
|
| 39 | frel 5478 |
. . . 4
| |
| 40 | 7, 19 | relsnop 4825 |
. . . 4
|
| 41 | eqrel 4808 |
. . . 4
| |
| 42 | 39, 40, 41 | sylancl 413 |
. . 3
|
| 43 | 38, 42 | mpbird 167 |
. 2
|
| 44 | 7, 19 | f1osn 5613 |
. . . 4
|
| 45 | f1oeq1 5560 |
. . . 4
| |
| 46 | 44, 45 | mpbiri 168 |
. . 3
|
| 47 | f1of 5572 |
. . 3
| |
| 48 | 46, 47 | syl 14 |
. 2
|
| 49 | 43, 48 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: fsng 5808 mapsn 6837 |
| Copyright terms: Public domain | W3C validator |