ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frel GIF version

Theorem frel 5352
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 5347 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 5296 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 14 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4616   Fn wfn 5193  wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by:  fssxp  5365  fsn  5668  eluzel2  9492  hmeocnv  13101  metn0  13172
  Copyright terms: Public domain W3C validator