| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metn0 | Unicode version | ||
| Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| metn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf 14908 |
. . . . 5
| |
| 2 | frel 5445 |
. . . . 5
| |
| 3 | reldm0 4910 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . . 4
|
| 5 | 1 | fdmd 5447 |
. . . . 5
|
| 6 | 5 | eqeq1d 2215 |
. . . 4
|
| 7 | 4, 6 | bitrd 188 |
. . 3
|
| 8 | sqxpeq0 5120 |
. . 3
| |
| 9 | 7, 8 | bitrdi 196 |
. 2
|
| 10 | 9 | necon3bid 2418 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-map 6755 df-met 14392 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |