ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metn0 Unicode version

Theorem metn0 14557
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metn0  |-  ( D  e.  ( Met `  X
)  ->  ( D  =/=  (/)  <->  X  =/=  (/) ) )

Proof of Theorem metn0
StepHypRef Expression
1 metf 14530 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 frel 5409 . . . . 5  |-  ( D : ( X  X.  X ) --> RR  ->  Rel 
D )
3 reldm0 4881 . . . . 5  |-  ( Rel 
D  ->  ( D  =  (/)  <->  dom  D  =  (/) ) )
41, 2, 33syl 17 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  ( D  =  (/)  <->  dom  D  =  (/) ) )
51fdmd 5411 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  dom  D  =  ( X  X.  X
) )
65eqeq1d 2202 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  ( dom  D  =  (/)  <->  ( X  X.  X )  =  (/) ) )
74, 6bitrd 188 . . 3  |-  ( D  e.  ( Met `  X
)  ->  ( D  =  (/)  <->  ( X  X.  X )  =  (/) ) )
8 sqxpeq0 5090 . . 3  |-  ( ( X  X.  X )  =  (/)  <->  X  =  (/) )
97, 8bitrdi 196 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  =  (/)  <->  X  =  (/) ) )
109necon3bid 2405 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  =/=  (/)  <->  X  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3447    X. cxp 4658   dom cdm 4660   Rel wrel 4665   -->wf 5251   ` cfv 5255   RRcr 7873   Metcmet 14036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-met 14044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator