ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metn0 Unicode version

Theorem metn0 14935
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metn0  |-  ( D  e.  ( Met `  X
)  ->  ( D  =/=  (/)  <->  X  =/=  (/) ) )

Proof of Theorem metn0
StepHypRef Expression
1 metf 14908 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 frel 5445 . . . . 5  |-  ( D : ( X  X.  X ) --> RR  ->  Rel 
D )
3 reldm0 4910 . . . . 5  |-  ( Rel 
D  ->  ( D  =  (/)  <->  dom  D  =  (/) ) )
41, 2, 33syl 17 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  ( D  =  (/)  <->  dom  D  =  (/) ) )
51fdmd 5447 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  dom  D  =  ( X  X.  X
) )
65eqeq1d 2215 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  ( dom  D  =  (/)  <->  ( X  X.  X )  =  (/) ) )
74, 6bitrd 188 . . 3  |-  ( D  e.  ( Met `  X
)  ->  ( D  =  (/)  <->  ( X  X.  X )  =  (/) ) )
8 sqxpeq0 5120 . . 3  |-  ( ( X  X.  X )  =  (/)  <->  X  =  (/) )
97, 8bitrdi 196 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  =  (/)  <->  X  =  (/) ) )
109necon3bid 2418 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  =/=  (/)  <->  X  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2177    =/= wne 2377   (/)c0 3464    X. cxp 4686   dom cdm 4688   Rel wrel 4693   -->wf 5281   ` cfv 5285   RRcr 7954   Metcmet 14384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-map 6755  df-met 14392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator