Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fssdmd | Unicode version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdmd.f | |
fssdmd.d |
Ref | Expression |
---|---|
fssdmd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdmd.d | . 2 | |
2 | fssdmd.f | . . 3 | |
3 | 2 | fdmd 5319 | . 2 |
4 | 1, 3 | sseqtrd 3162 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3098 cdm 4579 wf 5159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 df-fn 5166 df-f 5167 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |