ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdmd Unicode version

Theorem fssdmd 5361
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f  |-  ( ph  ->  F : A --> B )
fssdmd.d  |-  ( ph  ->  D  C_  dom  F )
Assertion
Ref Expression
fssdmd  |-  ( ph  ->  D  C_  A )

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2  |-  ( ph  ->  D  C_  dom  F )
2 fssdmd.f . . 3  |-  ( ph  ->  F : A --> B )
32fdmd 5354 . 2  |-  ( ph  ->  dom  F  =  A )
41, 3sseqtrd 3185 1  |-  ( ph  ->  D  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3121   dom cdm 4611   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-fn 5201  df-f 5202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator