ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdmd Unicode version

Theorem fssdmd 5326
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdmd.f  |-  ( ph  ->  F : A --> B )
fssdmd.d  |-  ( ph  ->  D  C_  dom  F )
Assertion
Ref Expression
fssdmd  |-  ( ph  ->  D  C_  A )

Proof of Theorem fssdmd
StepHypRef Expression
1 fssdmd.d . 2  |-  ( ph  ->  D  C_  dom  F )
2 fssdmd.f . . 3  |-  ( ph  ->  F : A --> B )
32fdmd 5319 . 2  |-  ( ph  ->  dom  F  =  A )
41, 3sseqtrd 3162 1  |-  ( ph  ->  D  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3098   dom cdm 4579   -->wf 5159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-in 3104  df-ss 3111  df-fn 5166  df-f 5167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator