ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrd Unicode version

Theorem sseqtrd 3180
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrd.1  |-  ( ph  ->  A  C_  B )
sseqtrd.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
sseqtrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrd
StepHypRef Expression
1 sseqtrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrd.2 . . 3  |-  ( ph  ->  B  =  C )
32sseq2d 3172 . 2  |-  ( ph  ->  ( A  C_  B  <->  A 
C_  C ) )
41, 3mpbid 146 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  sseqtrrd  3181  fssdmd  5351  resasplitss  5367  nnaword2  6482  erssxp  6524  phpm  6831  nnnninfeq  7092  ioodisj  9929  tgcl  12704  basgen  12720  bastop1  12723  bastop2  12724  clsss2  12769  topssnei  12802  cnntr  12865  txbasval  12907  neitx  12908  cnmpt1res  12936  cnmpt2res  12937  imasnopn  12939  hmeontr  12953  tgioo  13186  reldvg  13288  dvfvalap  13290  dvbss  13294  dvcnp2cntop  13303  dvaddxxbr  13305  dvmulxxbr  13306  dvcj  13313
  Copyright terms: Public domain W3C validator