| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 |
|
| sseqtrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 |
. 2
| |
| 2 | sseqtrd.2 |
. . 3
| |
| 3 | 2 | sseq2d 3214 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrrd 3223 fssdmd 5424 resasplitss 5440 nnaword2 6581 erssxp 6624 phpm 6935 nninfninc 7198 nnnninfeq 7203 ioodisj 10085 subsubm 13185 subsubg 13403 trivsubgd 13406 trivnsgd 13423 subsubrng 13846 subrgugrp 13872 subsubrg 13877 islssmd 13991 lspun 14034 lspssp 14035 lsslsp 14061 tgcl 14384 basgen 14400 bastop1 14403 bastop2 14404 clsss2 14449 topssnei 14482 cnntr 14545 txbasval 14587 neitx 14588 cnmpt1res 14616 cnmpt2res 14617 imasnopn 14619 hmeontr 14633 tgioo 14874 reldvg 14999 dvfvalap 15001 dvbss 15005 dvcnp2cntop 15019 dvaddxxbr 15021 dvmulxxbr 15022 dvcj 15029 |
| Copyright terms: Public domain | W3C validator |