| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 |
|
| sseqtrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 |
. 2
| |
| 2 | sseqtrd.2 |
. . 3
| |
| 3 | 2 | sseq2d 3254 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrd 3263 fssdmd 5487 resasplitss 5505 nnaword2 6660 erssxp 6703 phpm 7027 nninfninc 7290 nnnninfeq 7295 ioodisj 10189 subsubm 13516 subsubg 13734 trivsubgd 13737 trivnsgd 13754 subsubrng 14178 subrgugrp 14204 subsubrg 14209 islssmd 14323 lspun 14366 lspssp 14367 lsslsp 14393 tgcl 14738 basgen 14754 bastop1 14757 bastop2 14758 clsss2 14803 topssnei 14836 cnntr 14899 txbasval 14941 neitx 14942 cnmpt1res 14970 cnmpt2res 14971 imasnopn 14973 hmeontr 14987 tgioo 15228 reldvg 15353 dvfvalap 15355 dvbss 15359 dvcnp2cntop 15373 dvaddxxbr 15375 dvmulxxbr 15376 dvcj 15383 |
| Copyright terms: Public domain | W3C validator |