ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrd Unicode version

Theorem sseqtrd 3262
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrd.1  |-  ( ph  ->  A  C_  B )
sseqtrd.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
sseqtrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrd
StepHypRef Expression
1 sseqtrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrd.2 . . 3  |-  ( ph  ->  B  =  C )
32sseq2d 3254 . 2  |-  ( ph  ->  ( A  C_  B  <->  A 
C_  C ) )
41, 3mpbid 147 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrrd  3263  fssdmd  5487  resasplitss  5505  nnaword2  6660  erssxp  6703  phpm  7027  nninfninc  7290  nnnninfeq  7295  ioodisj  10189  subsubm  13516  subsubg  13734  trivsubgd  13737  trivnsgd  13754  subsubrng  14178  subrgugrp  14204  subsubrg  14209  islssmd  14323  lspun  14366  lspssp  14367  lsslsp  14393  tgcl  14738  basgen  14754  bastop1  14757  bastop2  14758  clsss2  14803  topssnei  14836  cnntr  14899  txbasval  14941  neitx  14942  cnmpt1res  14970  cnmpt2res  14971  imasnopn  14973  hmeontr  14987  tgioo  15228  reldvg  15353  dvfvalap  15355  dvbss  15359  dvcnp2cntop  15373  dvaddxxbr  15375  dvmulxxbr  15376  dvcj  15383
  Copyright terms: Public domain W3C validator