ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrd Unicode version

Theorem sseqtrd 3231
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrd.1  |-  ( ph  ->  A  C_  B )
sseqtrd.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
sseqtrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrd
StepHypRef Expression
1 sseqtrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrd.2 . . 3  |-  ( ph  ->  B  =  C )
32sseq2d 3223 . 2  |-  ( ph  ->  ( A  C_  B  <->  A 
C_  C ) )
41, 3mpbid 147 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  sseqtrrd  3232  fssdmd  5441  resasplitss  5457  nnaword2  6602  erssxp  6645  phpm  6964  nninfninc  7227  nnnninfeq  7232  ioodisj  10117  subsubm  13348  subsubg  13566  trivsubgd  13569  trivnsgd  13586  subsubrng  14009  subrgugrp  14035  subsubrg  14040  islssmd  14154  lspun  14197  lspssp  14198  lsslsp  14224  tgcl  14569  basgen  14585  bastop1  14588  bastop2  14589  clsss2  14634  topssnei  14667  cnntr  14730  txbasval  14772  neitx  14773  cnmpt1res  14801  cnmpt2res  14802  imasnopn  14804  hmeontr  14818  tgioo  15059  reldvg  15184  dvfvalap  15186  dvbss  15190  dvcnp2cntop  15204  dvaddxxbr  15206  dvmulxxbr  15207  dvcj  15214
  Copyright terms: Public domain W3C validator