Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrd.1 | |
sseqtrd.2 |
Ref | Expression |
---|---|
sseqtrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrd.1 | . 2 | |
2 | sseqtrd.2 | . . 3 | |
3 | 2 | sseq2d 3172 | . 2 |
4 | 1, 3 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseqtrrd 3181 fssdmd 5351 resasplitss 5367 nnaword2 6482 erssxp 6524 phpm 6831 nnnninfeq 7092 ioodisj 9929 tgcl 12704 basgen 12720 bastop1 12723 bastop2 12724 clsss2 12769 topssnei 12802 cnntr 12865 txbasval 12907 neitx 12908 cnmpt1res 12936 cnmpt2res 12937 imasnopn 12939 hmeontr 12953 tgioo 13186 reldvg 13288 dvfvalap 13290 dvbss 13294 dvcnp2cntop 13303 dvaddxxbr 13305 dvmulxxbr 13306 dvcj 13313 |
Copyright terms: Public domain | W3C validator |