| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 |
|
| sseqtrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 |
. 2
| |
| 2 | sseqtrd.2 |
. . 3
| |
| 3 | 2 | sseq2d 3223 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseqtrrd 3232 fssdmd 5439 resasplitss 5455 nnaword2 6600 erssxp 6643 phpm 6962 nninfninc 7225 nnnninfeq 7230 ioodisj 10115 subsubm 13315 subsubg 13533 trivsubgd 13536 trivnsgd 13553 subsubrng 13976 subrgugrp 14002 subsubrg 14007 islssmd 14121 lspun 14164 lspssp 14165 lsslsp 14191 tgcl 14536 basgen 14552 bastop1 14555 bastop2 14556 clsss2 14601 topssnei 14634 cnntr 14697 txbasval 14739 neitx 14740 cnmpt1res 14768 cnmpt2res 14769 imasnopn 14771 hmeontr 14785 tgioo 15026 reldvg 15151 dvfvalap 15153 dvbss 15157 dvcnp2cntop 15171 dvaddxxbr 15173 dvmulxxbr 15174 dvcj 15181 |
| Copyright terms: Public domain | W3C validator |