| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 |
|
| sseqtrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 |
. 2
| |
| 2 | sseqtrd.2 |
. . 3
| |
| 3 | 2 | sseq2d 3231 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sseqtrrd 3240 fssdmd 5459 resasplitss 5477 nnaword2 6623 erssxp 6666 phpm 6988 nninfninc 7251 nnnninfeq 7256 ioodisj 10150 subsubm 13430 subsubg 13648 trivsubgd 13651 trivnsgd 13668 subsubrng 14091 subrgugrp 14117 subsubrg 14122 islssmd 14236 lspun 14279 lspssp 14280 lsslsp 14306 tgcl 14651 basgen 14667 bastop1 14670 bastop2 14671 clsss2 14716 topssnei 14749 cnntr 14812 txbasval 14854 neitx 14855 cnmpt1res 14883 cnmpt2res 14884 imasnopn 14886 hmeontr 14900 tgioo 15141 reldvg 15266 dvfvalap 15268 dvbss 15272 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 dvcj 15296 |
| Copyright terms: Public domain | W3C validator |