| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 |
|
| sseqtrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 |
. 2
| |
| 2 | sseqtrd.2 |
. . 3
| |
| 3 | 2 | sseq2d 3213 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrrd 3222 fssdmd 5421 resasplitss 5437 nnaword2 6572 erssxp 6615 phpm 6926 nninfninc 7189 nnnninfeq 7194 ioodisj 10068 subsubm 13115 subsubg 13327 trivsubgd 13330 trivnsgd 13347 subsubrng 13770 subrgugrp 13796 subsubrg 13801 islssmd 13915 lspun 13958 lspssp 13959 lsslsp 13985 tgcl 14300 basgen 14316 bastop1 14319 bastop2 14320 clsss2 14365 topssnei 14398 cnntr 14461 txbasval 14503 neitx 14504 cnmpt1res 14532 cnmpt2res 14533 imasnopn 14535 hmeontr 14549 tgioo 14790 reldvg 14915 dvfvalap 14917 dvbss 14921 dvcnp2cntop 14935 dvaddxxbr 14937 dvmulxxbr 14938 dvcj 14945 |
| Copyright terms: Public domain | W3C validator |