| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrd.1 |
|
| sseqtrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrd.1 |
. 2
| |
| 2 | sseqtrd.2 |
. . 3
| |
| 3 | 2 | sseq2d 3223 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseqtrrd 3232 fssdmd 5441 resasplitss 5457 nnaword2 6602 erssxp 6645 phpm 6964 nninfninc 7227 nnnninfeq 7232 ioodisj 10117 subsubm 13348 subsubg 13566 trivsubgd 13569 trivnsgd 13586 subsubrng 14009 subrgugrp 14035 subsubrg 14040 islssmd 14154 lspun 14197 lspssp 14198 lsslsp 14224 tgcl 14569 basgen 14585 bastop1 14588 bastop2 14589 clsss2 14634 topssnei 14667 cnntr 14730 txbasval 14772 neitx 14773 cnmpt1res 14801 cnmpt2res 14802 imasnopn 14804 hmeontr 14818 tgioo 15059 reldvg 15184 dvfvalap 15186 dvbss 15190 dvcnp2cntop 15204 dvaddxxbr 15206 dvmulxxbr 15207 dvcj 15214 |
| Copyright terms: Public domain | W3C validator |