![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssdmd | GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
Ref | Expression |
---|---|
fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 5410 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrd 3217 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 dom cdm 4659 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-fn 5257 df-f 5258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |