![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssdmd | GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssdmd.d | ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
Ref | Expression |
---|---|
fssdmd | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdmd.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) | |
2 | fssdmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 5180 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrd 3063 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3000 dom cdm 4452 ⟶wf 5024 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 df-fn 5031 df-f 5032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |