ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm Unicode version

Theorem fssdm 5440
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d  |-  D  C_  dom  F
fssdm.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
fssdm  |-  ( ph  ->  D  C_  A )

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2  |-  D  C_  dom  F
2 fssdm.f . . 3  |-  ( ph  ->  F : A --> B )
32fdmd 5432 . 2  |-  ( ph  ->  dom  F  =  A )
41, 3sseqtrid 3243 1  |-  ( ph  ->  D  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166   dom cdm 4675   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-fn 5274  df-f 5275
This theorem is referenced by:  fisumss  11703  fprodssdc  11901  ghmpreima  13602  cnclima  14695  txcnmpt  14745  xmeter  14908
  Copyright terms: Public domain W3C validator