ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm Unicode version

Theorem fssdm 5488
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d  |-  D  C_  dom  F
fssdm.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
fssdm  |-  ( ph  ->  D  C_  A )

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2  |-  D  C_  dom  F
2 fssdm.f . . 3  |-  ( ph  ->  F : A --> B )
32fdmd 5480 . 2  |-  ( ph  ->  dom  F  =  A )
41, 3sseqtrid 3274 1  |-  ( ph  ->  D  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3197   dom cdm 4719   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5321  df-f 5322
This theorem is referenced by:  fisumss  11903  fprodssdc  12101  ghmpreima  13803  cnclima  14897  txcnmpt  14947  xmeter  15110
  Copyright terms: Public domain W3C validator