| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssdm | Unicode version | ||
| Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| fssdm.d |
|
| fssdm.f |
|
| Ref | Expression |
|---|---|
| fssdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssdm.d |
. 2
| |
| 2 | fssdm.f |
. . 3
| |
| 3 | 2 | fdmd 5480 |
. 2
|
| 4 | 1, 3 | sseqtrid 3274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-fn 5321 df-f 5322 |
| This theorem is referenced by: fisumss 11903 fprodssdc 12101 ghmpreima 13803 cnclima 14897 txcnmpt 14947 xmeter 15110 |
| Copyright terms: Public domain | W3C validator |