ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm Unicode version

Theorem fssdm 5460
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d  |-  D  C_  dom  F
fssdm.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
fssdm  |-  ( ph  ->  D  C_  A )

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2  |-  D  C_  dom  F
2 fssdm.f . . 3  |-  ( ph  ->  F : A --> B )
32fdmd 5452 . 2  |-  ( ph  ->  dom  F  =  A )
41, 3sseqtrid 3251 1  |-  ( ph  ->  D  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3174   dom cdm 4693   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-fn 5293  df-f 5294
This theorem is referenced by:  fisumss  11818  fprodssdc  12016  ghmpreima  13717  cnclima  14810  txcnmpt  14860  xmeter  15023
  Copyright terms: Public domain W3C validator