Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm Unicode version

Theorem fssdm 5327
 Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d
fssdm.f
Assertion
Ref Expression
fssdm

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2
2 fssdm.f . . 3
32fdmd 5319 . 2
41, 3sseqtrid 3174 1
 Colors of variables: wff set class Syntax hints:   wi 4   wss 3098   cdm 4579  wf 5159 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-in 3104  df-ss 3111  df-fn 5166  df-f 5167 This theorem is referenced by:  fisumss  11266  fprodssdc  11464  cnclima  12562  txcnmpt  12612  xmeter  12775
 Copyright terms: Public domain W3C validator