ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd Unicode version

Theorem fssd 5486
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f  |-  ( ph  ->  F : A --> B )
fssd.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
fssd  |-  ( ph  ->  F : A --> C )

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2  |-  ( ph  ->  F : A --> B )
2 fssd.b . 2  |-  ( ph  ->  B  C_  C )
3 fss 5485 . 2  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3197   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322
This theorem is referenced by:  mapss  6838  ac6sfi  7060  fseq1p1m1  10290  seqf1oglem2  10742  sswrd  11080  resqrexlemcvg  11530  resqrexlemsqa  11535  climcvg1nlem  11860  fsumcl2lem  11909  nninfctlemfo  12561  ennnfonelemh  12975  gsumress  13428  gsumwsubmcl  13529  gsumfzsubmcl  13875  cnrest2  14910  cnptoprest2  14914  cncfss  15257  limccnpcntop  15349  dvidre  15371  dvcoapbr  15381  dvef  15401  plyaddlem  15423  plymullem  15424  plycjlemc  15434  plycn  15436  dvply2g  15440  upgruhgr  15911  umgrupgr  15912  upgr1edc  15921  umgrislfupgrdom  15929  usgrislfuspgrdom  15988  isomninnlem  16398  trilpolemisumle  16406  iswomninnlem  16417  ismkvnnlem  16420
  Copyright terms: Public domain W3C validator