| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f |
|
| fssd.b |
|
| Ref | Expression |
|---|---|
| fssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f |
. 2
| |
| 2 | fssd.b |
. 2
| |
| 3 | fss 5457 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-f 5294 |
| This theorem is referenced by: mapss 6801 ac6sfi 7021 fseq1p1m1 10251 seqf1oglem2 10702 sswrd 11040 resqrexlemcvg 11445 resqrexlemsqa 11450 climcvg1nlem 11775 fsumcl2lem 11824 nninfctlemfo 12476 ennnfonelemh 12890 gsumress 13342 gsumwsubmcl 13443 gsumfzsubmcl 13789 cnrest2 14823 cnptoprest2 14827 cncfss 15170 limccnpcntop 15262 dvidre 15284 dvcoapbr 15294 dvef 15314 plyaddlem 15336 plymullem 15337 plycjlemc 15347 plycn 15349 dvply2g 15353 upgruhgr 15822 umgrupgr 15823 upgr1edc 15829 umgrislfupgrdom 15837 isomninnlem 16171 trilpolemisumle 16179 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |