| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f |
|
| fssd.b |
|
| Ref | Expression |
|---|---|
| fssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f |
. 2
| |
| 2 | fssd.b |
. 2
| |
| 3 | fss 5485 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 |
| This theorem is referenced by: mapss 6838 ac6sfi 7060 fseq1p1m1 10290 seqf1oglem2 10742 sswrd 11080 resqrexlemcvg 11530 resqrexlemsqa 11535 climcvg1nlem 11860 fsumcl2lem 11909 nninfctlemfo 12561 ennnfonelemh 12975 gsumress 13428 gsumwsubmcl 13529 gsumfzsubmcl 13875 cnrest2 14910 cnptoprest2 14914 cncfss 15257 limccnpcntop 15349 dvidre 15371 dvcoapbr 15381 dvef 15401 plyaddlem 15423 plymullem 15424 plycjlemc 15434 plycn 15436 dvply2g 15440 upgruhgr 15911 umgrupgr 15912 upgr1edc 15921 umgrislfupgrdom 15929 usgrislfuspgrdom 15988 isomninnlem 16398 trilpolemisumle 16406 iswomninnlem 16417 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |