| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f |
|
| fssd.b |
|
| Ref | Expression |
|---|---|
| fssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f |
. 2
| |
| 2 | fssd.b |
. 2
| |
| 3 | fss 5439 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5276 |
| This theorem is referenced by: mapss 6780 ac6sfi 6997 fseq1p1m1 10218 seqf1oglem2 10667 sswrd 11005 resqrexlemcvg 11363 resqrexlemsqa 11368 climcvg1nlem 11693 fsumcl2lem 11742 nninfctlemfo 12394 ennnfonelemh 12808 gsumress 13260 gsumwsubmcl 13361 gsumfzsubmcl 13707 cnrest2 14741 cnptoprest2 14745 cncfss 15088 limccnpcntop 15180 dvidre 15202 dvcoapbr 15212 dvef 15232 plyaddlem 15254 plymullem 15255 plycjlemc 15265 plycn 15267 dvply2g 15271 isomninnlem 16006 trilpolemisumle 16014 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |