| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| fssd.f | 
 | 
| fssd.b | 
 | 
| Ref | Expression | 
|---|---|
| fssd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fssd.f | 
. 2
 | |
| 2 | fssd.b | 
. 2
 | |
| 3 | fss 5419 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 | 
| This theorem is referenced by: mapss 6750 ac6sfi 6959 fseq1p1m1 10169 seqf1oglem2 10612 sswrd 10944 resqrexlemcvg 11184 resqrexlemsqa 11189 climcvg1nlem 11514 fsumcl2lem 11563 nninfctlemfo 12207 ennnfonelemh 12621 gsumress 13038 gsumwsubmcl 13128 gsumfzsubmcl 13468 cnrest2 14472 cnptoprest2 14476 cncfss 14819 limccnpcntop 14911 dvidre 14933 dvcoapbr 14943 dvef 14963 plyaddlem 14985 plymullem 14986 plycjlemc 14996 plycn 14998 dvply2g 15002 isomninnlem 15674 trilpolemisumle 15682 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |