| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f |
|
| fssd.b |
|
| Ref | Expression |
|---|---|
| fssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f |
. 2
| |
| 2 | fssd.b |
. 2
| |
| 3 | fss 5437 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5275 |
| This theorem is referenced by: mapss 6778 ac6sfi 6995 fseq1p1m1 10216 seqf1oglem2 10665 sswrd 11003 resqrexlemcvg 11330 resqrexlemsqa 11335 climcvg1nlem 11660 fsumcl2lem 11709 nninfctlemfo 12361 ennnfonelemh 12775 gsumress 13227 gsumwsubmcl 13328 gsumfzsubmcl 13674 cnrest2 14708 cnptoprest2 14712 cncfss 15055 limccnpcntop 15147 dvidre 15169 dvcoapbr 15179 dvef 15199 plyaddlem 15221 plymullem 15222 plycjlemc 15232 plycn 15234 dvply2g 15238 isomninnlem 15969 trilpolemisumle 15977 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |