ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd Unicode version

Theorem fssd 5420
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f  |-  ( ph  ->  F : A --> B )
fssd.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
fssd  |-  ( ph  ->  F : A --> C )

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2  |-  ( ph  ->  F : A --> B )
2 fssd.b . 2  |-  ( ph  ->  B  C_  C )
3 fss 5419 . 2  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3157   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5262
This theorem is referenced by:  mapss  6750  ac6sfi  6959  fseq1p1m1  10169  seqf1oglem2  10612  sswrd  10944  resqrexlemcvg  11184  resqrexlemsqa  11189  climcvg1nlem  11514  fsumcl2lem  11563  nninfctlemfo  12207  ennnfonelemh  12621  gsumress  13038  gsumwsubmcl  13128  gsumfzsubmcl  13468  cnrest2  14472  cnptoprest2  14476  cncfss  14819  limccnpcntop  14911  dvidre  14933  dvcoapbr  14943  dvef  14963  plyaddlem  14985  plymullem  14986  plycjlemc  14996  plycn  14998  dvply2g  15002  isomninnlem  15674  trilpolemisumle  15682  iswomninnlem  15693  ismkvnnlem  15696
  Copyright terms: Public domain W3C validator