| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f |
|
| fssd.b |
|
| Ref | Expression |
|---|---|
| fssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f |
. 2
| |
| 2 | fssd.b |
. 2
| |
| 3 | fss 5420 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 |
| This theorem is referenced by: mapss 6752 ac6sfi 6961 fseq1p1m1 10172 seqf1oglem2 10615 sswrd 10947 resqrexlemcvg 11187 resqrexlemsqa 11192 climcvg1nlem 11517 fsumcl2lem 11566 nninfctlemfo 12218 ennnfonelemh 12632 gsumress 13064 gsumwsubmcl 13154 gsumfzsubmcl 13494 cnrest2 14498 cnptoprest2 14502 cncfss 14845 limccnpcntop 14937 dvidre 14959 dvcoapbr 14969 dvef 14989 plyaddlem 15011 plymullem 15012 plycjlemc 15022 plycn 15024 dvply2g 15028 isomninnlem 15703 trilpolemisumle 15711 iswomninnlem 15722 ismkvnnlem 15725 |
| Copyright terms: Public domain | W3C validator |