ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd Unicode version

Theorem fssd 5458
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f  |-  ( ph  ->  F : A --> B )
fssd.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
fssd  |-  ( ph  ->  F : A --> C )

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2  |-  ( ph  ->  F : A --> B )
2 fssd.b . 2  |-  ( ph  ->  B  C_  C )
3 fss 5457 . 2  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3174   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-f 5294
This theorem is referenced by:  mapss  6801  ac6sfi  7021  fseq1p1m1  10251  seqf1oglem2  10702  sswrd  11040  resqrexlemcvg  11445  resqrexlemsqa  11450  climcvg1nlem  11775  fsumcl2lem  11824  nninfctlemfo  12476  ennnfonelemh  12890  gsumress  13342  gsumwsubmcl  13443  gsumfzsubmcl  13789  cnrest2  14823  cnptoprest2  14827  cncfss  15170  limccnpcntop  15262  dvidre  15284  dvcoapbr  15294  dvef  15314  plyaddlem  15336  plymullem  15337  plycjlemc  15347  plycn  15349  dvply2g  15353  upgruhgr  15822  umgrupgr  15823  upgr1edc  15829  umgrislfupgrdom  15837  isomninnlem  16171  trilpolemisumle  16179  iswomninnlem  16190  ismkvnnlem  16193
  Copyright terms: Public domain W3C validator