| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssd | Unicode version | ||
| Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fssd.f |
|
| fssd.b |
|
| Ref | Expression |
|---|---|
| fssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssd.f |
. 2
| |
| 2 | fssd.b |
. 2
| |
| 3 | fss 5422 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 |
| This theorem is referenced by: mapss 6759 ac6sfi 6968 fseq1p1m1 10186 seqf1oglem2 10629 sswrd 10961 resqrexlemcvg 11201 resqrexlemsqa 11206 climcvg1nlem 11531 fsumcl2lem 11580 nninfctlemfo 12232 ennnfonelemh 12646 gsumress 13097 gsumwsubmcl 13198 gsumfzsubmcl 13544 cnrest2 14556 cnptoprest2 14560 cncfss 14903 limccnpcntop 14995 dvidre 15017 dvcoapbr 15027 dvef 15047 plyaddlem 15069 plymullem 15070 plycjlemc 15080 plycn 15082 dvply2g 15086 isomninnlem 15761 trilpolemisumle 15769 iswomninnlem 15780 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |