Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fssd | Unicode version |
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fssd.f | |
fssd.b |
Ref | Expression |
---|---|
fssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssd.f | . 2 | |
2 | fssd.b | . 2 | |
3 | fss 5359 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3121 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 |
This theorem is referenced by: mapss 6669 ac6sfi 6876 fseq1p1m1 10050 resqrexlemcvg 10983 resqrexlemsqa 10988 climcvg1nlem 11312 fsumcl2lem 11361 ennnfonelemh 12359 cnrest2 13030 cnptoprest2 13034 cncfss 13364 limccnpcntop 13438 dvcoapbr 13465 dvef 13482 isomninnlem 14062 trilpolemisumle 14070 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |