ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssd Unicode version

Theorem fssd 5440
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssd.f  |-  ( ph  ->  F : A --> B )
fssd.b  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
fssd  |-  ( ph  ->  F : A --> C )

Proof of Theorem fssd
StepHypRef Expression
1 fssd.f . 2  |-  ( ph  ->  F : A --> B )
2 fssd.b . 2  |-  ( ph  ->  B  C_  C )
3 fss 5439 . 2  |-  ( ( F : A --> B  /\  B  C_  C )  ->  F : A --> C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-f 5276
This theorem is referenced by:  mapss  6780  ac6sfi  6997  fseq1p1m1  10218  seqf1oglem2  10667  sswrd  11005  resqrexlemcvg  11363  resqrexlemsqa  11368  climcvg1nlem  11693  fsumcl2lem  11742  nninfctlemfo  12394  ennnfonelemh  12808  gsumress  13260  gsumwsubmcl  13361  gsumfzsubmcl  13707  cnrest2  14741  cnptoprest2  14745  cncfss  15088  limccnpcntop  15180  dvidre  15202  dvcoapbr  15212  dvef  15232  plyaddlem  15254  plymullem  15255  plycjlemc  15265  plycn  15267  dvply2g  15271  isomninnlem  16006  trilpolemisumle  16014  iswomninnlem  16025  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator