ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbbid Unicode version

Theorem hbbid 1555
Description: Deduction form of bound-variable hypothesis builder hbbi 1528. (Contributed by NM, 1-Jan-2002.)
Hypotheses
Ref Expression
hbbid.1  |-  ( ph  ->  A. x ph )
hbbid.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
hbbid.3  |-  ( ph  ->  ( ch  ->  A. x ch ) )
Assertion
Ref Expression
hbbid  |-  ( ph  ->  ( ( ps  <->  ch )  ->  A. x ( ps  <->  ch ) ) )

Proof of Theorem hbbid
StepHypRef Expression
1 hbbid.1 . . . 4  |-  ( ph  ->  A. x ph )
2 hbbid.2 . . . 4  |-  ( ph  ->  ( ps  ->  A. x ps ) )
3 hbbid.3 . . . 4  |-  ( ph  ->  ( ch  ->  A. x ch ) )
41, 2, 3hbimd 1553 . . 3  |-  ( ph  ->  ( ( ps  ->  ch )  ->  A. x
( ps  ->  ch ) ) )
51, 3, 2hbimd 1553 . . 3  |-  ( ph  ->  ( ( ch  ->  ps )  ->  A. x
( ch  ->  ps ) ) )
64, 5anim12d 333 . 2  |-  ( ph  ->  ( ( ( ps 
->  ch )  /\  ( ch  ->  ps ) )  ->  ( A. x
( ps  ->  ch )  /\  A. x ( ch  ->  ps )
) ) )
7 dfbi2 386 . 2  |-  ( ( ps  <->  ch )  <->  ( ( ps  ->  ch )  /\  ( ch  ->  ps )
) )
8 albiim 1467 . 2  |-  ( A. x ( ps  <->  ch )  <->  ( A. x ( ps 
->  ch )  /\  A. x ( ch  ->  ps ) ) )
96, 7, 83imtr4g 204 1  |-  ( ph  ->  ( ( ps  <->  ch )  ->  A. x ( ps  <->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-i5r 1515
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator