ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbbid GIF version

Theorem hbbid 1510
Description: Deduction form of bound-variable hypothesis builder hbbi 1483. (Contributed by NM, 1-Jan-2002.)
Hypotheses
Ref Expression
hbbid.1 (𝜑 → ∀𝑥𝜑)
hbbid.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
hbbid.3 (𝜑 → (𝜒 → ∀𝑥𝜒))
Assertion
Ref Expression
hbbid (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))

Proof of Theorem hbbid
StepHypRef Expression
1 hbbid.1 . . . 4 (𝜑 → ∀𝑥𝜑)
2 hbbid.2 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
3 hbbid.3 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
41, 2, 3hbimd 1508 . . 3 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
51, 3, 2hbimd 1508 . . 3 (𝜑 → ((𝜒𝜓) → ∀𝑥(𝜒𝜓)))
64, 5anim12d 328 . 2 (𝜑 → (((𝜓𝜒) ∧ (𝜒𝜓)) → (∀𝑥(𝜓𝜒) ∧ ∀𝑥(𝜒𝜓))))
7 dfbi2 380 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
8 albiim 1419 . 2 (∀𝑥(𝜓𝜒) ↔ (∀𝑥(𝜓𝜒) ∧ ∀𝑥(𝜒𝜓)))
96, 7, 83imtr4g 203 1 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-4 1443  ax-i5r 1471
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator