ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbimd Unicode version

Theorem hbimd 1566
Description: Deduction form of bound-variable hypothesis builder hbim 1538. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
hbimd.1  |-  ( ph  ->  A. x ph )
hbimd.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
hbimd.3  |-  ( ph  ->  ( ch  ->  A. x ch ) )
Assertion
Ref Expression
hbimd  |-  ( ph  ->  ( ( ps  ->  ch )  ->  A. x
( ps  ->  ch ) ) )

Proof of Theorem hbimd
StepHypRef Expression
1 hbimd.3 . . . 4  |-  ( ph  ->  ( ch  ->  A. x ch ) )
21imim2d 54 . . 3  |-  ( ph  ->  ( ( ps  ->  ch )  ->  ( ps  ->  A. x ch )
) )
3 ax-4 1503 . . . . 5  |-  ( A. x ps  ->  ps )
43imim1i 60 . . . 4  |-  ( ( ps  ->  A. x ch )  ->  ( A. x ps  ->  A. x ch ) )
5 ax-i5r 1528 . . . 4  |-  ( ( A. x ps  ->  A. x ch )  ->  A. x ( A. x ps  ->  ch ) )
64, 5syl 14 . . 3  |-  ( ( ps  ->  A. x ch )  ->  A. x
( A. x ps 
->  ch ) )
72, 6syl6 33 . 2  |-  ( ph  ->  ( ( ps  ->  ch )  ->  A. x
( A. x ps 
->  ch ) ) )
8 hbimd.1 . . 3  |-  ( ph  ->  A. x ph )
9 hbimd.2 . . . 4  |-  ( ph  ->  ( ps  ->  A. x ps ) )
109imim1d 75 . . 3  |-  ( ph  ->  ( ( A. x ps  ->  ch )  -> 
( ps  ->  ch ) ) )
118, 10alimdh 1460 . 2  |-  ( ph  ->  ( A. x ( A. x ps  ->  ch )  ->  A. x
( ps  ->  ch ) ) )
127, 11syld 45 1  |-  ( ph  ->  ( ( ps  ->  ch )  ->  A. x
( ps  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1440  ax-gen 1442  ax-4 1503  ax-i5r 1528
This theorem is referenced by:  hbbid  1568  19.21ht  1574  equveli  1752  dvelimfALT2  1810
  Copyright terms: Public domain W3C validator