| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 |
|
| anim12d.2 |
|
| Ref | Expression |
|---|---|
| anim12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 |
. 2
| |
| 2 | anim12d.2 |
. 2
| |
| 3 | idd 21 |
. 2
| |
| 4 | 1, 2, 3 | syl2and 295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 600 anim12dan 602 3anim123d 1353 hband 1535 hbbid 1621 spsbim 1889 moim 2142 moimv 2144 2euswapdc 2169 rspcimedv 2909 soss 4404 trin2 5119 xp11m 5166 funss 5336 fun 5496 dff13 5891 f1eqcocnv 5914 isores3 5938 isosolem 5947 f1o2ndf1 6372 tposfn2 6410 tposf1o2 6414 nndifsnid 6651 nnaordex 6672 supmoti 7156 isotilem 7169 recexprlemss1l 7818 recexprlemss1u 7819 caucvgsrlemoffres 7983 suplocsrlem 7991 nnindnn 8076 eqord1 8626 lemul12b 9004 lt2msq 9029 lbreu 9088 cju 9104 nnind 9122 uz11 9741 xrre2 10013 ico0 10476 ioc0 10477 expcan 10933 swrdccatin2 11256 gcdaddm 12500 bezoutlemaz 12519 bezoutlembz 12520 isprm3 12635 prmdiveq 12753 mulgpropdg 13696 imasabl 13868 subrgdvds 14193 epttop 14758 cnptopresti 14906 cnptoprest 14907 txcnp 14939 addcncntoplem 15229 mulcncflem 15275 umgrvad2edg 16003 bj-stand 16070 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |