![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
anim12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | idd 21 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2and 295 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1329 hband 1499 hbbid 1585 spsbim 1853 moim 2100 moimv 2102 2euswapdc 2127 rspcimedv 2855 soss 4326 trin2 5032 xp11m 5079 funss 5247 fun 5400 dff13 5782 f1eqcocnv 5805 isores3 5829 isosolem 5838 f1o2ndf1 6243 tposfn2 6281 tposf1o2 6285 nndifsnid 6522 nnaordex 6543 supmoti 7006 isotilem 7019 recexprlemss1l 7648 recexprlemss1u 7649 caucvgsrlemoffres 7813 suplocsrlem 7821 nnindnn 7906 eqord1 8454 lemul12b 8832 lt2msq 8857 lbreu 8916 cju 8932 nnind 8949 uz11 9564 xrre2 9835 ico0 10276 ioc0 10277 expcan 10710 gcdaddm 11999 bezoutlemaz 12018 bezoutlembz 12019 isprm3 12132 prmdiveq 12250 mulgpropdg 13057 imasabl 13171 subrgdvds 13455 epttop 13886 cnptopresti 14034 cnptoprest 14035 txcnp 14067 addcncntoplem 14347 mulcncflem 14386 bj-stand 14796 exmidsbthrlem 15067 |
Copyright terms: Public domain | W3C validator |