![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
anim12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | idd 21 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2and 295 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1330 hband 1500 hbbid 1586 spsbim 1854 moim 2106 moimv 2108 2euswapdc 2133 rspcimedv 2867 soss 4346 trin2 5058 xp11m 5105 funss 5274 fun 5427 dff13 5812 f1eqcocnv 5835 isores3 5859 isosolem 5868 f1o2ndf1 6283 tposfn2 6321 tposf1o2 6325 nndifsnid 6562 nnaordex 6583 supmoti 7054 isotilem 7067 recexprlemss1l 7697 recexprlemss1u 7698 caucvgsrlemoffres 7862 suplocsrlem 7870 nnindnn 7955 eqord1 8504 lemul12b 8882 lt2msq 8907 lbreu 8966 cju 8982 nnind 9000 uz11 9618 xrre2 9890 ico0 10333 ioc0 10334 expcan 10790 gcdaddm 12124 bezoutlemaz 12143 bezoutlembz 12144 isprm3 12259 prmdiveq 12377 mulgpropdg 13237 imasabl 13409 subrgdvds 13734 epttop 14269 cnptopresti 14417 cnptoprest 14418 txcnp 14450 addcncntoplem 14740 mulcncflem 14786 bj-stand 15310 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |