| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 |
|
| anim12d.2 |
|
| Ref | Expression |
|---|---|
| anim12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 |
. 2
| |
| 2 | anim12d.2 |
. 2
| |
| 3 | idd 21 |
. 2
| |
| 4 | 1, 2, 3 | syl2and 295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1332 hband 1513 hbbid 1599 spsbim 1867 moim 2119 moimv 2121 2euswapdc 2146 rspcimedv 2883 soss 4369 trin2 5083 xp11m 5130 funss 5299 fun 5459 dff13 5850 f1eqcocnv 5873 isores3 5897 isosolem 5906 f1o2ndf1 6327 tposfn2 6365 tposf1o2 6369 nndifsnid 6606 nnaordex 6627 supmoti 7110 isotilem 7123 recexprlemss1l 7768 recexprlemss1u 7769 caucvgsrlemoffres 7933 suplocsrlem 7941 nnindnn 8026 eqord1 8576 lemul12b 8954 lt2msq 8979 lbreu 9038 cju 9054 nnind 9072 uz11 9691 xrre2 9963 ico0 10426 ioc0 10427 expcan 10883 gcdaddm 12380 bezoutlemaz 12399 bezoutlembz 12400 isprm3 12515 prmdiveq 12633 mulgpropdg 13575 imasabl 13747 subrgdvds 14072 epttop 14637 cnptopresti 14785 cnptoprest 14786 txcnp 14818 addcncntoplem 15108 mulcncflem 15154 bj-stand 15823 exmidsbthrlem 16102 |
| Copyright terms: Public domain | W3C validator |