![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
anim12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | idd 21 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2and 295 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1319 hband 1489 hbbid 1575 spsbim 1843 moim 2090 moimv 2092 2euswapdc 2117 rspcimedv 2843 soss 4314 trin2 5020 xp11m 5067 funss 5235 fun 5388 dff13 5768 f1eqcocnv 5791 isores3 5815 isosolem 5824 f1o2ndf1 6228 tposfn2 6266 tposf1o2 6270 nndifsnid 6507 nnaordex 6528 supmoti 6991 isotilem 7004 recexprlemss1l 7633 recexprlemss1u 7634 caucvgsrlemoffres 7798 suplocsrlem 7806 nnindnn 7891 eqord1 8439 lemul12b 8817 lt2msq 8842 lbreu 8901 cju 8917 nnind 8934 uz11 9549 xrre2 9820 ico0 10261 ioc0 10262 expcan 10695 gcdaddm 11984 bezoutlemaz 12003 bezoutlembz 12004 isprm3 12117 prmdiveq 12235 mulgpropdg 13023 subrgdvds 13354 epttop 13560 cnptopresti 13708 cnptoprest 13709 txcnp 13741 addcncntoplem 14021 mulcncflem 14060 bj-stand 14470 exmidsbthrlem 14740 |
Copyright terms: Public domain | W3C validator |