| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 |
|
| anim12d.2 |
|
| Ref | Expression |
|---|---|
| anim12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 |
. 2
| |
| 2 | anim12d.2 |
. 2
| |
| 3 | idd 21 |
. 2
| |
| 4 | 1, 2, 3 | syl2and 295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1331 hband 1511 hbbid 1597 spsbim 1865 moim 2117 moimv 2119 2euswapdc 2144 rspcimedv 2878 soss 4360 trin2 5073 xp11m 5120 funss 5289 fun 5447 dff13 5836 f1eqcocnv 5859 isores3 5883 isosolem 5892 f1o2ndf1 6313 tposfn2 6351 tposf1o2 6355 nndifsnid 6592 nnaordex 6613 supmoti 7094 isotilem 7107 recexprlemss1l 7747 recexprlemss1u 7748 caucvgsrlemoffres 7912 suplocsrlem 7920 nnindnn 8005 eqord1 8555 lemul12b 8933 lt2msq 8958 lbreu 9017 cju 9033 nnind 9051 uz11 9670 xrre2 9942 ico0 10402 ioc0 10403 expcan 10859 gcdaddm 12247 bezoutlemaz 12266 bezoutlembz 12267 isprm3 12382 prmdiveq 12500 mulgpropdg 13442 imasabl 13614 subrgdvds 13939 epttop 14504 cnptopresti 14652 cnptoprest 14653 txcnp 14685 addcncntoplem 14975 mulcncflem 15021 bj-stand 15617 exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |