![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
anim12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | idd 21 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2and 295 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1330 hband 1500 hbbid 1586 spsbim 1854 moim 2106 moimv 2108 2euswapdc 2133 rspcimedv 2866 soss 4345 trin2 5057 xp11m 5104 funss 5273 fun 5426 dff13 5811 f1eqcocnv 5834 isores3 5858 isosolem 5867 f1o2ndf1 6281 tposfn2 6319 tposf1o2 6323 nndifsnid 6560 nnaordex 6581 supmoti 7052 isotilem 7065 recexprlemss1l 7695 recexprlemss1u 7696 caucvgsrlemoffres 7860 suplocsrlem 7868 nnindnn 7953 eqord1 8502 lemul12b 8880 lt2msq 8905 lbreu 8964 cju 8980 nnind 8998 uz11 9615 xrre2 9887 ico0 10330 ioc0 10331 expcan 10787 gcdaddm 12121 bezoutlemaz 12140 bezoutlembz 12141 isprm3 12256 prmdiveq 12374 mulgpropdg 13234 imasabl 13406 subrgdvds 13731 epttop 14258 cnptopresti 14406 cnptoprest 14407 txcnp 14439 addcncntoplem 14719 mulcncflem 14761 bj-stand 15240 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |