| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 |
|
| anim12d.2 |
|
| Ref | Expression |
|---|---|
| anim12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 |
. 2
| |
| 2 | anim12d.2 |
. 2
| |
| 3 | idd 21 |
. 2
| |
| 4 | 1, 2, 3 | syl2and 295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1330 hband 1503 hbbid 1589 spsbim 1857 moim 2109 moimv 2111 2euswapdc 2136 rspcimedv 2870 soss 4350 trin2 5062 xp11m 5109 funss 5278 fun 5433 dff13 5818 f1eqcocnv 5841 isores3 5865 isosolem 5874 f1o2ndf1 6295 tposfn2 6333 tposf1o2 6337 nndifsnid 6574 nnaordex 6595 supmoti 7068 isotilem 7081 recexprlemss1l 7719 recexprlemss1u 7720 caucvgsrlemoffres 7884 suplocsrlem 7892 nnindnn 7977 eqord1 8527 lemul12b 8905 lt2msq 8930 lbreu 8989 cju 9005 nnind 9023 uz11 9641 xrre2 9913 ico0 10368 ioc0 10369 expcan 10825 gcdaddm 12176 bezoutlemaz 12195 bezoutlembz 12196 isprm3 12311 prmdiveq 12429 mulgpropdg 13370 imasabl 13542 subrgdvds 13867 epttop 14410 cnptopresti 14558 cnptoprest 14559 txcnp 14591 addcncntoplem 14881 mulcncflem 14927 bj-stand 15478 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |