| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
| Ref | Expression |
|---|---|
| anim12d.1 |
|
| anim12d.2 |
|
| Ref | Expression |
|---|---|
| anim12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12d.1 |
. 2
| |
| 2 | anim12d.2 |
. 2
| |
| 3 | idd 21 |
. 2
| |
| 4 | 1, 2, 3 | syl2and 295 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anim1d 336 anim2d 337 anim12 344 im2anan9 598 anim12dan 600 3anim123d 1331 hband 1511 hbbid 1597 spsbim 1865 moim 2117 moimv 2119 2euswapdc 2144 rspcimedv 2878 soss 4359 trin2 5071 xp11m 5118 funss 5287 fun 5442 dff13 5827 f1eqcocnv 5850 isores3 5874 isosolem 5883 f1o2ndf1 6304 tposfn2 6342 tposf1o2 6346 nndifsnid 6583 nnaordex 6604 supmoti 7077 isotilem 7090 recexprlemss1l 7730 recexprlemss1u 7731 caucvgsrlemoffres 7895 suplocsrlem 7903 nnindnn 7988 eqord1 8538 lemul12b 8916 lt2msq 8941 lbreu 9000 cju 9016 nnind 9034 uz11 9653 xrre2 9925 ico0 10385 ioc0 10386 expcan 10842 gcdaddm 12224 bezoutlemaz 12243 bezoutlembz 12244 isprm3 12359 prmdiveq 12477 mulgpropdg 13418 imasabl 13590 subrgdvds 13915 epttop 14480 cnptopresti 14628 cnptoprest 14629 txcnp 14661 addcncntoplem 14951 mulcncflem 14997 bj-stand 15548 exmidsbthrlem 15825 |
| Copyright terms: Public domain | W3C validator |