Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | |
anim12d.2 |
Ref | Expression |
---|---|
anim12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 | |
2 | anim12d.2 | . 2 | |
3 | idd 21 | . 2 | |
4 | 1, 2, 3 | syl2and 293 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anim1d 334 anim2d 335 anim12 342 im2anan9 593 anim12dan 595 3anim123d 1314 hband 1482 hbbid 1568 spsbim 1836 moim 2083 moimv 2085 2euswapdc 2110 rspcimedv 2836 soss 4299 trin2 5002 xp11m 5049 funss 5217 fun 5370 dff13 5747 f1eqcocnv 5770 isores3 5794 isosolem 5803 f1o2ndf1 6207 tposfn2 6245 tposf1o2 6249 nndifsnid 6486 nnaordex 6507 supmoti 6970 isotilem 6983 recexprlemss1l 7597 recexprlemss1u 7598 caucvgsrlemoffres 7762 suplocsrlem 7770 nnindnn 7855 eqord1 8402 lemul12b 8777 lt2msq 8802 lbreu 8861 cju 8877 nnind 8894 uz11 9509 xrre2 9778 ico0 10218 ioc0 10219 expcan 10650 gcdaddm 11939 bezoutlemaz 11958 bezoutlembz 11959 isprm3 12072 prmdiveq 12190 epttop 12884 cnptopresti 13032 cnptoprest 13033 txcnp 13065 addcncntoplem 13345 mulcncflem 13384 bj-stand 13783 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |