| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equveli | Unicode version | ||
| Description: A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1772.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| equveli | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | albiim 1501 | 
. 2
 | |
| 2 | ax12or 1522 | 
. . 3
 | |
| 3 | equequ1 1726 | 
. . . . . . . . 9
 | |
| 4 | equequ1 1726 | 
. . . . . . . . 9
 | |
| 5 | 3, 4 | imbi12d 234 | 
. . . . . . . 8
 | 
| 6 | 5 | sps 1551 | 
. . . . . . 7
 | 
| 7 | 6 | dral2 1745 | 
. . . . . 6
 | 
| 8 | equid 1715 | 
. . . . . . . . 9
 | |
| 9 | 8 | a1bi 243 | 
. . . . . . . 8
 | 
| 10 | 9 | biimpri 133 | 
. . . . . . 7
 | 
| 11 | 10 | sps 1551 | 
. . . . . 6
 | 
| 12 | 7, 11 | biimtrdi 163 | 
. . . . 5
 | 
| 13 | 12 | adantrd 279 | 
. . . 4
 | 
| 14 | equequ1 1726 | 
. . . . . . . . . 10
 | |
| 15 | equequ1 1726 | 
. . . . . . . . . 10
 | |
| 16 | 14, 15 | imbi12d 234 | 
. . . . . . . . 9
 | 
| 17 | 16 | sps 1551 | 
. . . . . . . 8
 | 
| 18 | 17 | dral1 1744 | 
. . . . . . 7
 | 
| 19 | equid 1715 | 
. . . . . . . . 9
 | |
| 20 | ax-4 1524 | 
. . . . . . . . 9
 | |
| 21 | 19, 20 | mpi 15 | 
. . . . . . . 8
 | 
| 22 | equcomi 1718 | 
. . . . . . . 8
 | |
| 23 | 21, 22 | syl 14 | 
. . . . . . 7
 | 
| 24 | 18, 23 | biimtrdi 163 | 
. . . . . 6
 | 
| 25 | 24 | adantld 278 | 
. . . . 5
 | 
| 26 | hba1 1554 | 
. . . . . . . . . 10
 | |
| 27 | hbequid 1527 | 
. . . . . . . . . . 11
 | |
| 28 | 27 | a1i 9 | 
. . . . . . . . . 10
 | 
| 29 | ax-4 1524 | 
. . . . . . . . . 10
 | |
| 30 | 26, 28, 29 | hbimd 1587 | 
. . . . . . . . 9
 | 
| 31 | 30 | a5i 1557 | 
. . . . . . . 8
 | 
| 32 | equtr 1723 | 
. . . . . . . . . 10
 | |
| 33 | ax-8 1518 | 
. . . . . . . . . 10
 | |
| 34 | 32, 33 | imim12d 74 | 
. . . . . . . . 9
 | 
| 35 | 34 | ax-gen 1463 | 
. . . . . . . 8
 | 
| 36 | 19.26 1495 | 
. . . . . . . . 9
 | |
| 37 | spimth 1749 | 
. . . . . . . . 9
 | |
| 38 | 36, 37 | sylbir 135 | 
. . . . . . . 8
 | 
| 39 | 31, 35, 38 | sylancl 413 | 
. . . . . . 7
 | 
| 40 | 8, 39 | mpii 44 | 
. . . . . 6
 | 
| 41 | 40 | adantrd 279 | 
. . . . 5
 | 
| 42 | 25, 41 | jaoi 717 | 
. . . 4
 | 
| 43 | 13, 42 | jaoi 717 | 
. . 3
 | 
| 44 | 2, 43 | ax-mp 5 | 
. 2
 | 
| 45 | 1, 44 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |