| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equveli | Unicode version | ||
| Description: A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1772.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| equveli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1501 |
. 2
| |
| 2 | ax12or 1522 |
. . 3
| |
| 3 | equequ1 1726 |
. . . . . . . . 9
| |
| 4 | equequ1 1726 |
. . . . . . . . 9
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . 8
|
| 6 | 5 | sps 1551 |
. . . . . . 7
|
| 7 | 6 | dral2 1745 |
. . . . . 6
|
| 8 | equid 1715 |
. . . . . . . . 9
| |
| 9 | 8 | a1bi 243 |
. . . . . . . 8
|
| 10 | 9 | biimpri 133 |
. . . . . . 7
|
| 11 | 10 | sps 1551 |
. . . . . 6
|
| 12 | 7, 11 | biimtrdi 163 |
. . . . 5
|
| 13 | 12 | adantrd 279 |
. . . 4
|
| 14 | equequ1 1726 |
. . . . . . . . . 10
| |
| 15 | equequ1 1726 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | imbi12d 234 |
. . . . . . . . 9
|
| 17 | 16 | sps 1551 |
. . . . . . . 8
|
| 18 | 17 | dral1 1744 |
. . . . . . 7
|
| 19 | equid 1715 |
. . . . . . . . 9
| |
| 20 | ax-4 1524 |
. . . . . . . . 9
| |
| 21 | 19, 20 | mpi 15 |
. . . . . . . 8
|
| 22 | equcomi 1718 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 18, 23 | biimtrdi 163 |
. . . . . 6
|
| 25 | 24 | adantld 278 |
. . . . 5
|
| 26 | hba1 1554 |
. . . . . . . . . 10
| |
| 27 | hbequid 1527 |
. . . . . . . . . . 11
| |
| 28 | 27 | a1i 9 |
. . . . . . . . . 10
|
| 29 | ax-4 1524 |
. . . . . . . . . 10
| |
| 30 | 26, 28, 29 | hbimd 1587 |
. . . . . . . . 9
|
| 31 | 30 | a5i 1557 |
. . . . . . . 8
|
| 32 | equtr 1723 |
. . . . . . . . . 10
| |
| 33 | ax-8 1518 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | imim12d 74 |
. . . . . . . . 9
|
| 35 | 34 | ax-gen 1463 |
. . . . . . . 8
|
| 36 | 19.26 1495 |
. . . . . . . . 9
| |
| 37 | spimth 1749 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylbir 135 |
. . . . . . . 8
|
| 39 | 31, 35, 38 | sylancl 413 |
. . . . . . 7
|
| 40 | 8, 39 | mpii 44 |
. . . . . 6
|
| 41 | 40 | adantrd 279 |
. . . . 5
|
| 42 | 25, 41 | jaoi 717 |
. . . 4
|
| 43 | 13, 42 | jaoi 717 |
. . 3
|
| 44 | 2, 43 | ax-mp 5 |
. 2
|
| 45 | 1, 44 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |