ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim1d Unicode version

Theorem imim1d 75
Description: Deduction adding nested consequents. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.)
Hypothesis
Ref Expression
imim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imim1d  |-  ( ph  ->  ( ( ch  ->  th )  ->  ( ps  ->  th ) ) )

Proof of Theorem imim1d
StepHypRef Expression
1 imim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
31, 2imim12d 74 1  |-  ( ph  ->  ( ( ch  ->  th )  ->  ( ps  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1  76  imbi1d  231  expt  658  hbimd  1587  moim  2109  moimv  2111  sstr2  3191  ssralv  3248  soss  4350  nneneq  6927  prarloclem3  7581  fzind  9458  exbtwnzlemshrink  10355  rebtwn2zlemshrink  10360  seq3fveq2  10584  seqfveq2g  10586  seq3shft2  10590  seqshft2g  10591  monoord  10594  seq3split  10597  seqsplitg  10598  seq3id2  10635  seqhomog  10639  seq3coll  10951  rexico  11403  cnntr  14545  2sqlem6  15445  setindft  15695
  Copyright terms: Public domain W3C validator